Welcome to Math A4900 – Monday 8/28/17

Instructor: Professor Zajj Daugherty, NAC 6/301, zdaugherty@gmail.com
Office hours: Wednesdays 12:45–1:45, or by appointment
Course Website: https://zdaugherty.ccny.cuny.edu/teaching/mA4900f17/

Homework 0: due Thursday 8/31 by email.
See course website for the rest of the syllabus, as well as instructions for homework 0. Follow these instructions precisely in your email to me to receive credit.

Attach at the end of Homework 1:
Before writing up homework 1, read handouts “Communicating Mathematics through Homework and Exams” and “Some Guidelines for Good Mathematical Writing”. Then, at the end of your write-up, include the following, labeling this as “Writing exercise”.
(a) List three things you learned or thought about more carefully after reading these documents.
(b) Mark up this written homework assignment, showing where you followed or failed to follow the mechanical and stylistic issues outlined in Communicating Mathematics. . . . How might you improve in the future?
(c) List three or more ways that you succeeded or failed at following the advice in Some Guidelines. . . . How might you improve in the future?
To receive credit for this assignment, you must complete this exercise.

Chapter 0.1 quick-reference

Types of numbers:
• \( Z \), integers: \( 0, 1, -1, 2, -2, 3, -3, \ldots \)
• \( Z_0 \), Natural numbers: \( 0, 1, 2, 3, 4, \ldots \)
  In set notation,
  \[ Z_0 = \{ n \in Z \mid n \geq 0 \}. \]
  “the set of” “in” “such that”
• \( Z_0 \), positive integers: \( 1, 2, 3, 4, \ldots \)
• \( Q \), rational numbers: \( \{ a/b \mid a, b \in Z, b \neq 0 \} \)
• \( R \), real numbers: basically, convergent decimal expansions (take real analysis for this one. . . )
• \( C \), complex numbers: \( \{ a + bi \mid a, b \in R, i^2 = -1 \} \)
• Units, numbers that have multiplicative inverses: (depends on what set you’re working in!)
  (a) In \( Z \): 1 and \(-1\).
  (b) In \( R \) and \( Q \): everything except for 0.
  (c) In \( Z_0 \): 1.

Note: The book writes \( Z^+ \), \( Q^+ \), and \( R^+ \) to mean \( Z_0 \), \( Q_0 \), and \( R_0 \), respectively. We use the latter notation because it is clearer.
Functions: Let \( f : A \to B \) be a map, where \( A \) and \( B \) are sets. We call
\[
f(A) = \{ f(a) \mid a \in A \}
\]
the image of \( f \), and, for \( b \in B \) and \( C \subseteq B \), we call
\[
f^{-1}(b) = \{ a \in A \mid f(a) = b \}
\]
the preimages of the element \( b \) and the subset \( C \), respectively. We also call \( f^{-1}(b) \) the fiber of \( f \) over \( b \). For a subset \( A' \subseteq A \), we write the restriction of \( f \) to \( A' \) as
\[
f\big|_{A'} : A' \to B \quad \text{defined by} \quad a' \mapsto f(a') \quad \text{for all} \quad a' \in A'.
\]

Types of maps:
- **Well-defined**: for all \( a \in A \),
  1. \( f(a) \in A \), and
  2. each \( a \in A \) maps to only one \( b \in B \), i.e. if \( a = a' \) then \( f(a) = f(a') \).
  
  Example: \( f : \mathbb{R}_{>0} \to \mathbb{R} \) by \( x \mapsto \sqrt{x} \). Non-example: \( f : \mathbb{R} \to \mathbb{R} \) by \( x \mapsto \sqrt{x} \).
A map is a function if and only if it is well-defined.
- **Injective** (a.k.a. one-to-one): if \( f(a) = f(a') \), then \( a = a' \), i.e. for all \( b \in B \), \( |f^{-1}(b)| = 0 \) or 1.
  
  Example: \( f : \mathbb{R}_{\geq 0} \to \mathbb{R} \) by \( x \mapsto x^2 \). Non-example: \( f : \mathbb{R} \to \mathbb{R} \) by \( x \mapsto x^2 \).
- **Surjective** (a.k.a. onto): for all \( b \in B \), there is some \( a \in A \) such that \( f(a) = b \), i.e. \( f(A) = B \).
  
  Example: \( f : \mathbb{R} \to \mathbb{R}_{\geq 0} \) by \( x \mapsto x^2 \). Non-example: \( f : \mathbb{R} \to \mathbb{R} \) by \( x \mapsto x^2 \).
- **Bijective**: both injective and surjective.
  
  Example: \( f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) by \( x \mapsto x^2 \).
- **Left-invertible**: there is a function \( g : B \to A \) such that \( (g \circ f)(a) = a \) for all \( a \in A \). Similarly, \( f \) is right-invertible if there is a function \( g : B \to A \) such that \( (f \circ g)(b) = b \) for all \( b \in B \). We say \( f \) is invertible if it is left- and right-invertible. See Proposition 0.1.
- **Fact**: a function is invertible if and only if it is bijective.

Binary and equivalence relations: for sets \( A, B \neq \emptyset \), the Cartesian product of \( A \) and \( B \) is
\[
A \times B = \{ (a, b) \mid a \in A, b \in B \}.
\]
- A **binary relation** \( \sim \) on \( A \) is a subset \( R \subseteq A \times A \). We write \( a \sim a' \) if \( (a, a') \in R \).
- A binary relation is
  1. **reflexive** if \( a \sim a \) for all \( a \in A \);
  2. **symmetric** if whenever \( a \sim b \) for \( a, b \in A \), we also have \( b \sim a \); and
  3. **transitive** if whenever \( a \sim b \) and \( b \sim c \) for \( a, b, c \in A \), we also have \( a \sim c \).
A relation is an equivalence relation of it is reflexive, symmetric, and transitive.
- **Fact**: if \( \sim \) is an equivalence relation on \( A \), we call the equivalence class of any \( a \in A \) the set
\[
[a] = \{ b \in A \mid b \sim a \}.
\]
For any \( b \in A \), we have \([b] = [a]\), and \( b \) is called a representative of \([a]\).
- A **partition** of a set \( A \) is a set of subsets \( A_1, A_2, \ldots, A_n \subseteq A \) satisfying
  1. for any \( i \neq j \), we have \( A_i \cap A_j = \emptyset \); and
  2. \( A_1 \cup A_2 \cup \cdots \cup A_n = A \).
In other words, \( A \) is the disjoint union of \( A_1, \ldots, A_n \), written
\[
A = A_1 \sqcup A_2 \sqcup \cdots \sqcup A_n.
\]
### Modulo 2:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

### Modulo 3:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

### Modulo 4:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

### Modulo 5:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

### Modulo 6:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Getting started

Starting with the “Preliminaries” chapter:
Section 0.1: Basics. Set and function notation; familiar sets (Z, Q, etc.); properties of functions; relations. (Review)
Section 0.2: Properties of integers. Greatest common divisors and least common multiples; division and Euclidean algorithms; prime factorization; Euler function.
Section 0.3: Integers modulo \( n \). Modular arithmetic.
Section 0.1: Basics.

See “Chapter 0.1 quick-reference” on handout.

- Types of numbers: Mostly review. Special mention: units
- Equivalence relations and set partitions.

**Theorem**

Let $A$ be a nonempty set, and let $\sim$ be an equivalence relation on $A$. The set of equivalence classes $\{[a] \mid a \in A\}$ of $\sim$ forms a partition of $A$.

**Division algorithm and modular arithmetic**

For any two integers $a, n \in \mathbb{Z}$ with $n \neq 0$, there are unique $q, r \in \mathbb{Z}$ with

$$a = qn + r \quad \text{and} \quad 0 \leq r < |n|.$$  

Think: $n$ divides into $a$ $q$ times with remainder $r$.

**Example:** if $a = 100$ and $n = 6$, then $q = 16$ and $r = 4$, since $16 \times 6 = 96$, so $100 = 16 \times 6 + 4$.

**Example:** Always, if $0 \leq a < |n|$, then $q = 0$ and $r = a$. So, for example, if $a = 4$ and $n = 6$, then $q = 0$ and $r = 4$, since $4 = 0 \times 6 + 4$.

We say two numbers $a$ and $b$ are congruent modulo (mod) $n$, written

$$a \equiv b \pmod{n} \quad \text{or} \quad a \equiv_n b$$

if they have the same remainder when divided by $n$.

**Example:** We just saw that $100 \equiv_6 4$. More:

\[
\begin{array}{cccccccc}
-24 & -18 & -12 & -6 & 0 & 6 & 12 & 18 & 24 \\
-20 & -14 & -8 & -2 & 4 & 10 & 16 & 22 & 28 \\
& & & & & & & & \text{all congr. to 4 mod 6}
\end{array}
\]
Theorem. Fix $n \in \mathbb{Z}_{>1}$. Then

$$a \sim b \text{ if and only if } a \equiv b \pmod{n}$$

is an equivalence relation.

(This works for any $n \neq 0$, but we won’t need those.)

For $a \in \mathbb{Z}$, the associated equivalence class under this equivalence relation is

$$[a] = \{a + kn \mid k \in \mathbb{Z}\} = \{\ldots, a - 2n, a - n, a, a + n, a + 2n, \ldots\}.$$

For this specific equivalence relation, we write $\bar{a}$ in place of $[a]$; and the equiv classes are called congruence or residue classes $\pmod{n}$.

Fact. The congruence classes are exactly $\bar{0}, \bar{1}, \bar{2}, \ldots, \bar{n-1}$, and these sets partition $\mathbb{Z}$ (every integer has a unique remainder mod $n$, and the possible remainders are $0, 1, 2, \ldots, n - 1$).
Modular arithmetic

**Theorem**

Fix $n \in \mathbb{Z}_{>0}$. Then

- addition: $\overline{a + b} := \overline{a} + \overline{b}$, and
- multiplication: $\overline{a \ast b} := \overline{a} \ast \overline{b}$

are well-defined binary operations on the set of congruence classes modulo $n$. Moreover, they both satisfy the associative and commutative properties.

**Binary operation:** a function $A \times A \rightarrow A$, written $(a, b) \mapsto a \star b$. (Combine two elements of $A$ to get a third element of $A$, like $+$, $\ast$, $-$, $\div$, $\circ$, etc..)

**Well-defined:** independent of representative.

Let $a' \in \overline{a}$ and $b' \in \overline{b}$. Then...

**Notation:** We call the set of congruence classes modulo $n$

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}, \quad \text{read "Z mod } n \text{ Z".}$$
Let \( n \in \mathbb{Z} \). We say \( d \in \mathbb{Z} \) divides \( n \) if there is some \( m \in \mathbb{Z} \) such that
\[
md = n. \quad \text{We write} \quad d \mid n.
\]
For any \( a, b \in \mathbb{Z}_{\neq 0} \), there is a unique positive integer \( d \) which is a common divisor of \( a \) and \( b \), i.e.
\[
d \mid a \quad \text{and} \quad d \mid b,
\]
and for any other common divisor \( e \) of \( a \) and \( b \), we have \( e \mid d \). We call \( d \) the greatest common divisor (gcd) of \( a \) and \( b \), and write
\[
d = \gcd(a, b) = (a, b).
\]

Example: \((4, 6) = 2, \quad (-4, -12) = 4, \quad (7, 10) = 1\).

If \((a, b) = 1\), we say \( a \) and \( b \) are relatively prime.

Properties of integers.

For any \( a, b \in \mathbb{Z}_{\neq 0} \), there is also a unique positive integer \( \ell \) which is a common multiple of \( a \) and \( b \), i.e.
\[
a \mid \ell \quad \text{and} \quad b \mid \ell,
\]
and for any other common multiple \( m \) of \( a \) and \( b \), we have \( \ell \mid m \). We call \( \ell \) the least common multiple (lcm) of \( a \) and \( b \), and write
\[
\ell = \text{lcm}(a, b).
\]

Example:
\[
\text{lcm}(4, 6) = 12, \quad \text{lcm}(-4, -12) = 12, \quad \text{lcm}(7, 10) = 70.
\]

Thm. For any \( a, b \in \mathbb{Z}_{\neq 0} \), we have \( \text{lcm}(a, b)\gcd(a, b) = \pm ab \).
Properties of integers

Theorem
For any \(a, b \in \mathbb{Z}_{>0},\)

\[(a, b) = xa + yb \quad \text{for some } x, y \in \mathbb{Z}.

In other words, the greatest common divisor is a \(\mathbb{Z}\)-linear combination of \(a\) and \(b\).

Examples:

\[-1 \cdot 4 + 1 \cdot 6 = 2 = (4, 6)\]

\[2 \cdot (-4) + 1 \cdot 12 = 4 = (-4, -12)\]

\[3 \cdot 7 + (-2) \cdot 10 = 1 = (7, 10)\]

Read in Section 0.2 (p5) about the Euclidean Algorithm for computing gcd and the correct coefficients \(x\) and \(y\).
Euler $\varphi$-function

Let $n \in \mathbb{Z}_{>1}$. Let

$$\varphi(n) = \# \{1 \leq m \leq n - 1 \mid (m, n) = 1\}.$$

Example: For $n = 6$,

$$(1, 6) = 1, \quad (2, 6) = 2, \quad (3, 6) = 3, \quad (4, 6) = 2, \quad \text{and} \quad (5, 6) = 1,$$

so $\varphi(6) = 2$.

Theorem

1. If $p$ is a prime number, $\varphi(p) = p - 1$.

   Further, for $a \in \mathbb{Z}_{>0}$, we have

   $$\varphi(p^a) = p^a - p^{a-1} = p^{a-1}(p - 1).$$

2. The function $\varphi$ is multiplicative, namely for any $m, n \in \mathbb{Z}_{>1}$,

   $$\varphi(mn) = \varphi(m)\varphi(n).$$
Communicating Mathematics through Homework and Exams

Effective communication is essential to mathematics. As a student, much of your communication will be in the form of homework and exams. In the end, whether you are studying basic algebra or advanced topics in representation theory, it won’t matter what you know if you cannot share your ideas with others (specifically your graders). You may also find that taking the time to write out your ideas clearly will help you to better gauge your own understanding. Therefore, so that you can prove your level of understanding, and receive meaningful and worthwhile feedback, it is important that you put your work in an easy to read, easy to navigate format. After all, how you present your work should enhance the ideas you are trying to communicate (to your grader and to yourself), not impede them. With that in mind, the following are some guidelines for submitting work in your math classes.

Mechanical Issues

- In the upper right-hand corner you should write
  - your name,
  - the class and section number,
  - the homework set number, and
  - the due date.

- Homework with multiple pages should be stapled in the upper left-hand corner.

- Clearly label/number problems on the left side of the page. There should also be a visible separation between problems.

- Start each solution with the original problem statement (or at least a summary thereof, with all key ideas). This will help you to process the question, as well as provide a convenient tool for studying in the future.

- Put problems in the order they are assigned.

- Leave most of the top margin and the entire left margin blank so that graders may use this space for scoring and comments.

- Avoid scratch work on assignments. Instead, first work out the solutions to problems on scratch paper, and then write or type them up neatly.

- Box your final answers to computational problems.

- For hand-written assignments:
  - Your handwriting should be legible.
    (Don’t want to work on your handwriting? See the section on learning L\textsc{e}X!)
  - Use one side of each sheet of paper. Using both can smudge or obscure writing.
  - Long solutions (≥ half a page) should have their own sheet(s) of paper.
Common Mathematical Transition Words

<table>
<thead>
<tr>
<th>Also</th>
<th>As</th>
<th>Because</th>
<th>Certainly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequently</td>
<td>Conversely</td>
<td>For example</td>
<td>Furthermore</td>
</tr>
<tr>
<td>Given</td>
<td>Hence</td>
<td>In fact</td>
<td>In particular</td>
</tr>
<tr>
<td>It follows that</td>
<td>Likewise</td>
<td>Moreover</td>
<td>Similarly</td>
</tr>
<tr>
<td>Since</td>
<td>That is</td>
<td>Therefore</td>
<td>Thus</td>
</tr>
</tbody>
</table>

If possible, avoid *clearly*, *obviously*, and *surely*. If something is “clear”, then just state it. Graders often see these words as red flags—these connectives often indicate that important parts of the problem are being glossed over without understanding.

Stylistic Issues

- Explain your steps using complete sentences and connective words.

- Make sure that your steps are logical, explicit, and proceed toward the desired conclusion. Often, reading your solution aloud to yourself can help you determine whether it makes sense and flows well.

- Balance words and mathematical symbols. Use mathematical symbols for mathematical objects and precise mathematical relations (e.g., points, sets, numbers, functions, operators). Use words to connect these symbols logically and to relate them conceptually.

- Punctuate your text with whitespace and paragraph breaks. From time to time, center complicated or important formulas and equations on their own line with space around them, especially if they contain fractions or other vertical constructions. (This is called *display setting* the expression.)

- In proofs, make sure you understand what conditions you are assuming and what conclusions you must show. In particular, revisit the appropriate definitions and important theorems. Often this process alone will make the steps of the proof apparent.

For more on stylistic suggestions, see *Guidelines for Good Mathematical Writing*, F. Su, MAA Focus, August/September 2015, pp. 20–22.

If you are interested in learning to type up your solutions, LaTeX (pronounced “lah-tek” or “lay-tek”) is an easy-to-learn programming language designed specifically for math and technical writing. There are many resources online to help you out, including LaTeX-project.org, TeXample.net, and TeX.StackExchange.com. The “Not So Short Introduction to LaTeX” is a good quick-reference, and is easily found through an online search.
Some Guidelines for Good Mathematical Writing

By Francis Edward Su

Communicating mathematics well is an important part of doing mathematics. Many of us know from writing papers or giving talks that communicating effectively not only serves our audience but also clarifies and structures our own thinking. There is an art and elegance to good writing that every writer should strive for. And writing, as a work of art, can bring a person great personal satisfaction.

Within the MAA, we value exposition and mathematical communication. In this column, I’m sharing the advice I give my students to help them write well. There are more extensive treatments (e.g., see Paul Halmos’s How to Write Mathematics), but I wanted a shorter introduction. So I developed the guidelines below.

Basics

Know your audience. This is the most important consideration for writers. Put yourself in your reader’s shoes. What background can we assume of the reader? What terminology should we define? What kind of “voice” do we want to project: casual or professional, serious or inviting, terse or loquacious?

If you are a student writing solutions for a homework set and your professor has not specified your audience, a good rule of thumb is to assume you are writing to another student in the course who has not yet done the assignment. Though you may assume that she has attended all the same lectures and has read the same textbook, it is standard courtesy to remind your readers of any relevant items that they have learned recently from the class or textbook, or things they should know but might have forgotten.

For instance, if the concept of a rational number was only recently learned in class, you might insert “Recall that a rational number can be expressed as a fraction” before saying “since x is rational, x = m/n where m and n are integers.”

Set an invitational tone. It is traditional to create an inviting atmosphere in one’s mathematical writing. In effect, we invite readers to join us in our reasoning process by writing in the present tense, using the pronoun “we” instead of “I” (e.g., “we construct a tangent plane...”), and directing the reader with gentle commands (e.g., “let n be . . . ”, “recall that . . . ”, or “consider the set of . . . ”).

Use complete sentences. All mathematics should be written in sentences. Open any mathematics text and you’ll see that this is true. Equations, even displayed ones, have punctuation that helps you see where it fits in the context of a larger sentence. Consider this piece of writing:

\[
(x - 2)^2 + (x - 1)^2 = 5^2 \ 5^2 = 25 \\
(x - 2)^2 = x^2 - 4x + 4 + x^2 - 2x + 1 = 25. \\
2x^2 - 6x - 20 \\
2(x + 2)(x - 5) = -2, 5 x > 0 x = 5
\]

Can you figure out what the writer is doing? What’s being assumed? What’s being proved? Where does one thought end and another begin? What’s the relationship between these phrases? Some phrases are dangling, and others, as statements, are not even true. The reader should not have to figure out what the writer was thinking.

Now consider the work of another writer attempting the same problem:

Problem. Find a point on the line \( y = x \) that is distance 5 from the point (2,1) and whose x-coordinate is positive.

Solution. The desired point is (5,5). To see this, we solve \( (x - 2)^2 + (x - 1)^2 = 5^2 \), an equation obtained from the distance formula in the plane. A little algebra turns this equation into:

\[
2x^2 - 6x - 20 = 0.
\]

Factoring the left side, we obtain

\[
2(x + 2)(x - 5) = 0,
\]

whose solutions are \( x = -2 \) and \( x = 5 \). Since we assumed \( x > 0 \), we have (5,5) as the desired point on the line \( y = x \).

Here, the writer has clearly stated the problem and described her path to a solution. She has set an invitational tone, and every thought is expressed in a complete sentence. Now it is clear that \( x > 0 \) is a condition, not a result. Notice the punctuation in equations: one ended with a period because her thought was complete, the other ended with a comma because she wanted to continue the thought.

Since she assumed her audience could do algebra, she didn’t bore them with algebraic manipulation, which would obscure the thread of her arguments. But she did show the crucial and most interesting piece: the
factoring and its result. And she made sure she answered the original question.

**Use words to give context to equations.** Consider the difference in meaning between these three statements: “Let \( A = 5. \)” “Suppose \( A = 5. \)” “Therefore \( A = 5. \)” Then reflect on the ambiguity of the statement “\( A = 5. \)”

**Avoid shorthand in formal writing.** The many types of mathematical writing can be loosely grouped into formal and informal writing. Informal writing includes writing on a blackboard during lecture, or explaining something to a friend on a piece of scratch paper. Formal writing includes the kind of writing expected on a homework assignment or in a paper. There are differences in what is acceptable. For instance, in informal writing, it is common to use shorthand for quantifiers and implications: symbols such as \( \forall, \exists, \Rightarrow, \Leftrightarrow, \), or abbreviations such as “iff” and “s.t.”

However, in formal writing, such shorthand should generally be avoided. You should write out “for all,” “there exists,” “implies,” “if and only if,” and “such that.”

Most other symbols are acceptable in formal writing, after defining them where needed. The membership symbol \( \in \) is traditionally acceptable in formal writing, as are relations (e.g., \( <, +, \cup, \) etc.), variable names (e.g., \( x, y, z \)), and symbols for sets (e.g., \( \mathbb{R} \)). Here is an acceptable use of symbols in formal mathematical writing:

Let \( A \) and \( B \) be two subsets of \( \mathbb{R} \). We say \( A \) dominates \( B \) if for every \( x \in A \) there exists \( y \in B \) such that \( y > x \).

**Learn the etiquette.** The above example also illustrates two common conventions of mathematical etiquette. It is customary to avoid beginning sentences or phrases with a number or symbol because that can be confusing. It is also customary to emphasize unfamiliar words that we are about to define, such as by italicizing them. Other etiquette can be learned by observing the norms used in your area of study.

**Toward Elegance**

**Decide what’s important to say.** Writing well does not necessarily mean writing more. If your solution is too wordy, it can sometimes obscure the points you are making.

A well-written solution will present just enough details and highlight the most interesting or unexpected parts of the argument. What theorems or axioms were crucial in getting your solution, and where were they used? Your role as a writer is not primarily to give details (though that can be important). Your primary role is to give insight.

**Highlight structure.** If your argument is going to be a long one, with lots of technical details, then try to help the reader by summarizing the outline of your argument at the beginning. Then, throughout your writing, help your reader see how you are progressing through your outline.
Use paragraphs to emphasize blocks of ideas that are related.
The role of the first sentences of paragraphs is crucial: imagine a reader skimming your writing and reading only the first sentences. Will she see the flow of your argument? Similarly, you might want to display only the most important equations. Replacing an oft-repeated argument by a good lemma can streamline the flow as well as highlight a key idea.

Choose good examples. A difficult idea may be easier to digest if accompanied by an example. Choose one simple enough to follow, but interesting enough to retain the salient features. A proof of a very general idea could be preceded by an example in a specific context. A long exposition might benefit from a running example—one in which the same example is used multiple times in different contexts.

Avoid red herrings! Omit details that have no bearing on the solution of the problem, because they may throw the reader off. For example, if you say “we express the rational r as m/n where m and n have no common factors,” you are leaving a clue that later you will use the “no common factors” idea. So if you never use that fact, you should omit saying it. It’s extraneous. Red herrings may make mystery novels fun, but in mathematical writing, your goal is to dispel mystery!

Step back and simplify. After writing a proof, step back and ask: How can I simplify this argument? Did I use every tool I pulled out to solve this problem? Can I streamline this argument? For example, consider this apparent proof by contradiction:

Problem. Show that if 4 divides an integer n, then n is even.

Proof. Suppose n were not even.
Since 4 divides n, we have n = 4k for some integer k.
Thus n = 2(2k), which is even.
This contradicts our hypothesis that n is not even. QED.

Do you see why this is not really a proof by contradiction? The contradictory hypothesis in the first sentence was never used! Strip away the first and last sentence, and you have an elegant, direct proof.

Refine, refine, refine. Good writing is a process of successive approximations. You should not expect your first draft to be perfect. You will find that when you review your writing, you will see ways to shorten an argument or say something in a better way. This is the part of the writing process that will help clarify your own thinking as well.

Often, after completing a draft, a writer may notice that a particular choice of notation or definition was not optimal. A lazy writer would leave things as they are, but a thoughtful writer will take the time to go back and make changes.

Observe the culture. Good communication is inseparable from the culture in which it takes place. This realization may unsettle budding mathematicians who are attracted to the logical absolutes of mathematics. But even these absolutes are expressed differently by mathematicians of different eras, as can be seen by comparing Newton’s writings with any of today’s calculus texts. The rules of mathematical etiquette have evolved.

Although these guidelines attempt to draw up some common principles for formal writing, there will always be exceptions—because some mathematical field may have a slightly different norm. The best way to get a sense of what is acceptable in your context is to browse several highly regarded texts or papers related to the document you are writing.

Enjoy the art of writing. Writing is an occasion to reflect on beautiful ideas and paint them on a paper canvas with great artistic care.

Acknowledgments. It is appropriate to acknowledge any support you received. My revisions of these guidelines benefited greatly from the helpful feedback of Jon Jacobsen and Lesley Ward.

Francis Edward Su is president of the MAA. His email is su@math.hmc.edu. And he is on Twitter: @mathyawp.