A group action of a group G on a set A is a map from
$$G \times A \to A \quad (g, a) \mapsto g \cdot a$$
that satisfies
$$g \cdot (h \cdot a) = (gh) \cdot a \quad \text{and} \quad 1 \cdot a = a \quad (\text{structure preserving})$$
for all $g, h \in G$, $a \in A$. We say G acts on A, denoted $G \acts A$.

Examples:
1. The dihedral group acts on the set of symmetric states a regular n-gon can occupy by rotations and flips.
2. The symmetric group S_X acts on X by permutation.
3. Any group G acts on itself (let $A = G$) in several ways:
 - left regular action: $g \cdot a = ga$
 - right multiplication: $g \cdot a = ag^{-1}$
 - conjugation: $g \cdot a = gag^{-1}$

Note: The way we've been writing the action $(g \cdot a)$ is called a left action. Sometimes it can be better to write $a \cdot g$ means g is acting from the right.

The right regular action is $a \cdot g = ag$. (Different from the left action of right multiplication!)

Theorem
A group action is equivalent to a homomorphism
$$G \to S_A$$
$$g \mapsto \sigma_g \quad \text{defined by } \sigma_g(a) = g \cdot a.$$

In other words, given a homomorphism, you get an action, and vice versa.
Theorem

A group action is equivalent to a homomorphism

\[G \to S_A \]
\[g \mapsto \sigma_g \text{ defined by } \sigma_g(a) = g \cdot a. \]

In other words, given a homomorphism, you get an action, and vice versa.

Some vocabulary/facts:

(1) The trivial action is \(g \cdot a = a \), i.e. \(\sigma_g = 1 \) for all \(g \in G \).
(2) If the map \(g \to \sigma_g \) is injective, we say the action is faithful.
(3) The kernel of an action is the set \(\{ g \in G \mid g \cdot a = a \quad \forall a \in A \} \).
 The kernel of a \(G \)-action is a subgroup of \(G \).
(4) The stabilizer of an element \(s \in A \) is the set \(G_s = \{ g \in G \mid g \cdot s = s \} \). This is also a subgroup of \(G \).
(5) On the homework:
 “\(a \sim b \) if there is some \(g \) for which \(g \cdot a = b \)”
 is an equivalence relation. The orbit of an element \(s \in A \) is the
 equivalence class of \(a \), \(\bar{a} = \{ a \in A \mid g \cdot s = a \text{ for some } g \in G \} \).
Types of groups we know

Numbers: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}^\times, \mathbb{R}^\times, \mathbb{C}^\times$

Matrices: $(M_n(F), +), \text{GL}_n(F)$, where $F = \mathbb{Q}, \mathbb{R}, \mathbb{C},$ or \mathbb{F}_p.

Modular groups: $\mathbb{Z}/n\mathbb{Z}$ and $(\mathbb{Z}/n\mathbb{Z})^\times$

Dihedral groups: $D_{2n} = \langle r, s \mid s^2 = r^n = 1, rs = sr^{-1} \rangle$

Symmetric groups: $S_n = \{ \text{permutations of } 1, \ldots, n \}$

Quaternians: $\mathbb{Q}_8 = \langle i, j, k, -1 \mid \cdots \rangle$

Finite groups, infinite groups, abelian groups

Types of subgroups we know

Kernels of homomorphisms, of group actions

Images of homomorphisms

The center (elements of G which commute with everything in G.)

Centralizers (elements of G which commute w everything in $A \subseteq G$)

Normalizers (elements of G which setwise commute with $A \subseteq G$)

Stabilizers (given a group action on A, the elements of G which fix elements of a set $S \subseteq A$)

Cyclic groups

A group H is **cyclic** if H can be generated by a single element. In other words, there is some element $x \in H$ for which $H = \{ x^\ell \mid \ell \in \mathbb{Z} \} = \langle x \rangle$.

Additive notation: $H = \{ \ell x \mid \ell \in \mathbb{Z} \} = \langle x \rangle$.

Examples:

- $\mathbb{Z}/n\mathbb{Z}$ is generated by $\bar{1}$
- \mathbb{Z} is generated by 1

Non-example: S_3 is not cyclic.

Check: This group consists of

1. the identity, which only generates itself;
2. two-cycles, $(i\ j)$, which only generate themselves and the identity; and
3. three-cycles $(1\ i\ j)$, which only generate $(1\ i\ j)$, $(1\ j\ i)$, and 1.
Order

If the generator has finite order, then the cyclic group is finite, and is presented as

\[
\text{mult: } \langle x \mid x^n = 1 \rangle \quad \text{add: } \langle x \mid nx = 0 \rangle.
\]

Example: The integers modulo \(n \) are cyclic and finite,

\[
\mathbb{Z}/n\mathbb{Z} = \langle x = \bar{1} \mid nx = 0 \rangle.
\]

If the generator has infinite order, then there are are no relations, and the cyclic group is \textit{countably infinite}.

Example: The integers are cyclic and infinite,

\[
\mathbb{Z} = \langle 1 \rangle.
\]

Proposition

If \(H = \langle x \rangle \), then \(|H| = |x| \). More specifically,

(1) \(|H| = n \) iff \(x^n = 1 \) and \(1, x, x^2, \ldots, x^{n-1} \) are all distinct,

(2) \(|H| = \infty \) iff \(x^a \neq x^b \) for all \(a \neq b \).

Proof. (Same argument as in your homework: read p. 55) \(\Box \)
Cyclic groups are unique

Theorem
Any two cyclic subgroups of the same order are isomorphic.
In particular,

1. if \(n \in \mathbb{Z}_{>0} \) and \(\langle x \rangle \) and \(\langle y \rangle \) are both cyclic groups of order \(n \), then
 \[
 \varphi : \langle x \rangle \rightarrow \langle y \rangle \quad x^k \mapsto y^k
 \]
 is a well-defined bijective homomorphism, or

2. if \(\langle x \rangle \) is an infinite cyclic group, then the map
 \[
 \varphi : \mathbb{Z} \rightarrow \langle x \rangle \quad k \mapsto x^k
 \]
 is a well defined bijective homomorphism.

Notation: Let \(Z_n \) be the cyclic group of order \(n \).
Cyclic subgroups

Example: What are the cyclic subgroups of D_8?

(1) $\langle r \rangle = \{r^\ell \mid \ell \in \mathbb{Z}\} = \{\ldots, r^{-2}, r^{-1}, 1, r, r^2, r^3, r^4, \ldots\}$
 $= \{1, r, r^2, r^3\}$, since $r^4 = 1$, so that $r^{4k+\ell} = r^\ell$.

(2) $\langle r^2 \rangle = \{(r^2)^\ell \mid \ell \in \mathbb{Z}\} = \{\ldots, r^{-2}, 1, r^2, r^4, r^6, \ldots\} = \{1, r^2\}$.

(3) $\langle r^3 \rangle = \{(r^3)^\ell \mid \ell \in \mathbb{Z}\} = \{\ldots, r^{-6}, r^{-3}, 1, r^3, r^6, r^9, r^{12}, \ldots\}$
 $= \{\ldots, r^{-2}, r^1, 1, r^3, r^2, r^1, 0, \ldots\} = \{1, r, r^2, r^3\}$.
 (Same as (1))

(4) $\langle s \rangle = \{s^\ell \mid \ell \in \mathbb{Z}\} = \{\ldots, s^{-2}, s^{-1}, 1, s, s^2, s^3, s^4, \ldots\}$
 $= \{1, s\}$, since $s^2 = 1$, so that $r^{2k+\ell} = r^\ell$.

(5) $\langle rs \rangle = \{(rs)^\ell \mid \ell \in \mathbb{Z}\}$
 $= \{\ldots, (rs)^{-2}, (rs)^{-1}, 1, (rs), (rs)^2, (rs)^3, (rs)^4, \ldots\}$.
 Note that $(rs)^2 = rsrs = rr^{-1}ss = 1$. So $\langle rs \rangle = \{1, rs\}$. Recall we showed that $|r^m s| = 2$ for any m!

(6) So similarly, $\langle r^2 s \rangle = \{1, r^2 s\}$ and $\langle r^3 s \rangle = \{1, r^3 s\}$.

(7) $\langle 1 \rangle = \{1\} = 1$ (Notation).

Cyclic subgroups

You try: What are the cyclic subgroups of S_4?