Warmup: Draw the symmetries for the triangle.

(1) How many symmetries are there?

(2) If we call the move “rotate clockwise” r, what is the order of r? Is there a way to write r^{-1} in terms of some positive power of r?

(3) If we call the move “flip across a vertical axis” s, what is the order of s? Is there a way to write s^{-1} in terms of some positive power of s?

(4) Note that $r^a s^b$ means “flip b times and then rotate a times” (read actions right to left like function composition). Now label each of the symmetries by some $r^a s^b$. Then label each of the symmetries by some $s^b r^a$, and then by $s^b r^{-a}$, and compare all three forms.

Repeat parts (1)–(4) for the square.
Review: Let G be a set. A **binary operation** \star on G is a function

$$\star : G \times G \rightarrow G.$$

A **group** is a pair (G, \star) consisting of a set G and a binary operation \star on G such that:

1. \star is **associative**, i.e. $(a \star b) \star c = a \star (b \star c)$;
2. there is an **identity** element $e \in G$, i.e.

$$e \star g = g = g \star e \quad \text{for all } g \in G;$$

3. every element of G has an **inverse**; i.e. for all $g \in G$, there is an element g^{-1} such that $gg^{-1} = e = g^{-1}g$.

Favorite examples so far:

1. \mathbb{Z}^n, \mathbb{Q}^n, \mathbb{R}^n, \mathbb{C}^n under addition.
2. \mathbb{Q}^\times, \mathbb{R}^\times, \mathbb{C}^\times under multiplication.
3. $\mathbb{Z}/n\mathbb{Z}$ under addition.
4. $(\mathbb{Z}/n\mathbb{Z})^\times = \{ a \in \mathbb{Z}/n\mathbb{Z} \mid a \text{ is relatively prime to } n \}$ under multiplication.
The **order** of a group G, denoted $|G|$, is the size of the underlying set.

For any element $x \in G$, if $x^n = e$ for some $n \in \mathbb{Z}_{>0}$, we say the **order of** x is the smallest such n.

Theorem

1. An element $x \in G$ has order 1 if and only if $x = e$.
2. $x^m = e$ iff $|x|$ divides m.
Let

\[D_{2n} = \text{group of symmetries of a regular } 2n\text{-gon}, \]

where \textit{symmetries} means ways to move the \(2n\)-gon so that the outline ends looking the same, but the vertices have moved.

Some properties:

(1) There are always \(2n\) symmetries, i.e. \(D_{2n}\) has order \(2n\).

(2) The symmetries are, for example, generated by \(r = \text{“rotate clockwise } (360/n)°\text{”} \) and \(s = \text{“flip over a vertical axis”}\).

(3) The element \(r\) has order \(n\), and the element \(s\) has order 2.

(4) The elements \(r\) and \(s\) don’t commute, but they do satisfy

\[rs = sr^{-1} \quad \text{and} \quad sr = r^{-1}s. \]
Group presentations

A subset of elements $S \subseteq G$ with the property that every element of G can be written as a finite product of elements of S and their inverses is called a set of generators of G. We write $\langle S \rangle = G$.

Ex: D_{2n} is generated by $S = \{r, s\}$; \mathbb{Z} is generated by 1; $\mathbb{Z}/n\mathbb{Z}$ is generated by $\bar{1}$.

Any equations that are satisfied in G are called relations.

Ex: The generators $S = \{r, s\}$ satisfy $s^2 = r^n = 1$ and $rs = sr - 1$.

If a set of relations R has the property that any relation in G can be derived from those in R then those generators and relations form a presentation of G, written $\langle \text{generators} | \text{relations} \rangle$.

In short, a presentation is everything you need to build the group.

Some examples:

$D_{12} = \langle r, s | r^6 = e, s^2 = e, r^{-1}s = sr \rangle$

$\mathbb{Z}/3\mathbb{Z} = \langle \bar{1} | \bar{1}^3 = e \rangle$ (Yes, weird notation!)

$\mathbb{Z} = \langle 1 | \emptyset \rangle = \langle 1 \rangle$ (If there are no relations, i.e. $R = \emptyset$, we write $G = \langle S \rangle$.)
Group presentations

A subset of elements $S \subseteq G$ with the property that every element of G can be written as a finite product of elements of S and their inverses is called a set of generators of G. We write $\langle S \rangle = G$.

Ex: D_{2n} is generated by $S = \{r, s\}$
Group presentations

A subset of elements $S \subseteq G$ with the property that every element of G can be written as a finite product of elements of S and their inverses is called a set of generators of G. We write $\langle S \rangle = G$.

Ex: D_{2n} is generated by $S = \{r, s\}$; \mathbb{Z} is generated by 1.
Group presentations

A subset of elements $S \subseteq G$ with the property that every element of G can be written as a finite product of elements of S and their inverses is called a set of generators of G. We write $\langle S \rangle = G$.

Ex: D_{2n} is generated by $S = \{r, s\}$; \mathbb{Z} is generated by 1; $\mathbb{Z}/n\mathbb{Z}$ is generated by $\bar{1}$.
Group presentations

A subset of elements $S \subseteq G$ with the property that every element of G can be written as a finite product of elements of S and their inverses is called a set of generators of G. We write $\langle S \rangle = G$.

Ex: D_{2n} is generated by $S = \{r, s\}$; \mathbb{Z} is generated by 1; $\mathbb{Z}/n\mathbb{Z}$ is generated by $\bar{1}$.

Any equations that are satisfied in G are called relations.
Group presentations

A subset of elements \(S \subseteq G \) with the property that every element of \(G \) can be written as a finite product of elements of \(S \) and their inverses is called a set of **generators** of \(G \). We write \(\langle S \rangle = G \).

Ex: \(D_{2n} \) is generated by \(S = \{r, s\} \); \(\mathbb{Z} \) is generated by 1; \(\mathbb{Z}/n\mathbb{Z} \) is generated by \(\overline{1} \).

Any equations that are satisfied in \(G \) are called **relations**.

Ex: The generators \(S = \{r, s\} \) satisfy \(s^2 = r^n = 1 \) and \(rs = sr^{-1} \).
Group presentations

A subset of elements $S \subseteq G$ with the property that every element of G can be written as a finite product of elements of S and their inverses is called a set of generators of G. We write $\langle S \rangle = G$.

Ex: D_{2n} is generated by $S = \{r, s\}$; \mathbb{Z} is generated by 1; $\mathbb{Z}/n\mathbb{Z}$ is generated by $\bar{1}$.

Any equations that are satisfied in G are called relations.

Ex: The generators $S = \{r, s\}$ satisfy $s^2 = r^n = 1$ and $rs = sr^{-1}$.

If a set of relations R has the property that any relation in G can be derived from those in R then those generators and relations form a presentation of G, written

\[\langle \text{generators} \mid \text{relations} \rangle. \]

In short, a presentation is everything you need to build the group.
Group presentations

A subset of elements $S \subseteq G$ with the property that every element of G can be written as a finite product of elements of S and their inverses is called a set of generators of G. We write $\langle S \rangle = G$.

Ex: D_{2n} is generated by $S = \{r, s\}$; \mathbb{Z} is generated by 1; $\mathbb{Z}/n\mathbb{Z}$ is generated by $\bar{1}$.

Any equations that are satisfied in G are called relations.

Ex: The generators $S = \{r, s\}$ satisfy $s^2 = r^n = 1$ and $rs = sr^{-1}$.

If a set of relations R has the property that any relation in G can be derived from those in R then those generators and relations form a presentation of G, written

$$\langle \text{generators} \mid \text{relations} \rangle.$$

In short, a presentation is everything you need to build the group.

Some examples:

$$D_{12} = \langle r, s \mid r^6 = e, s^2 = e, r^{-1}s = sr \rangle$$
Group presentations

A subset of elements $S \subseteq G$ with the property that every element of G can be written as a finite product of elements of S and their inverses is called a set of generators of G. We write $\langle S \rangle = G$.

Ex: D_{2n} is generated by $S = \{r, s\}$; \mathbb{Z} is generated by 1; $\mathbb{Z}/n\mathbb{Z}$ is generated by $\bar{1}$.

Any equations that are satisfied in G are called relations.

Ex: The generators $S = \{r, s\}$ satisfy $s^2 = r^n = 1$ and $rs = sr^{-1}$.

If a set of relations R has the property that any relation in G can be derived from those in R then those generators and relations form a presentation of G, written

$$\langle \text{generators} \mid \text{relations} \rangle.$$

In short, a presentation is everything you need to build the group.

Some examples:

$$D_{12} = \langle r, s \mid r^6 = e, s^2 = e, r^{-1}s = sr \rangle$$

$$\mathbb{Z}/3\mathbb{Z} = \langle \bar{1} \mid \bar{1}^3 = e \rangle \text{ (Yes, weird notation!)}$$
Group presentations

A subset of elements \(S \subseteq G \) with the property that every element of \(G \) can be written as a finite product of elements of \(S \) and their inverses is called a set of generators of \(G \). We write \(\langle S \rangle = G \).

Ex: \(D_{2n} \) is generated by \(S = \{r, s\} \); \(\mathbb{Z} \) is generated by 1; \(\mathbb{Z}/n\mathbb{Z} \) is generated by \(\bar{1} \).

Any equations that are satisfied in \(G \) are called relations.

Ex: The generators \(S = \{r, s\} \) satisfy \(s^2 = r^n = 1 \) and \(rs = sr^{-1} \).

If a set of relations \(R \) has the property that any relation in \(G \) can be derived from those in \(R \) then those generators and relations form a presentation of \(G \), written

\[
\langle \text{generators} \mid \text{relations} \rangle.
\]

In short, a presentation is everything you need to build the group.

Some examples:

\[
D_{12} = \langle r, s \mid r^6 = e, s^2 = e, r^{-1}s = sr \rangle
\]

\[
\mathbb{Z}/3\mathbb{Z} = \langle \bar{1} \mid \bar{1}^3 = e \rangle \quad \text{(Yes, weird notation!)}
\]

\[
\mathbb{Z} = \langle 1 \mid \emptyset \rangle = \langle 1 \rangle
\]

(If there are no relations, i.e. \(R = \emptyset \), we write \(G = \langle S \rangle \).)
Intuition from linear algebra

Generators are like “spanning sets” from linear algebra.
Intuition from linear algebra

Generators are like “spanning sets” from linear algebra. For example, let $G = \mathbb{Z}^2$. Then $x = (1, 0)$ generates

$$x + x = (2, 0), x + x + x = (3, 0), \ldots,$$

and also

$$x^{-1} = (-1, 0) \quad x^{-1} + x^{-1} = (-2, 0), \ldots$$
Intuition from linear algebra

Generators are like “spanning sets” from linear algebra. For example, let \(G = \mathbb{Z}^2 \). Then \(x = (1, 0) \) generates

\[
x + x = (2, 0), \ x + x + x = (3, 0), \ldots,
\]

and also

\[
x^{-1} = (-1, 0) \quad x^{-1} + x^{-1} = (-2, 0), \ldots.
\]

Throwing in \(y = (0, 1) \) you also get

\[
y^{-1} = (0, -1), \ x + y = (1, 1), \ \text{etc.}
\]

So \(S = \{x, y\} \) generates \(\mathbb{Z}^2 \).
Intuition from linear algebra

Generators are like "spanning sets" from linear algebra. For example, let $G = \mathbb{Z}^2$. Then $x = (1, 0)$ generates

$$x + x = (2, 0), \ x + x + x = (3, 0), \ldots,$$

and also

$$x^{-1} = (-1, 0) \quad x^{-1} + x^{-1} = (-2, 0), \ldots.$$

Throwing in $y = (0, 1)$ you also get

$$y^{-1} = (0, -1), \ x + y = (1, 1), \ \text{etc}.$$

So $S = \{x, y\}$ generates \mathbb{Z}^2. The only additional information you need to define the group is that $xy = yx$. So

$$\mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle.$$
Intuition from linear algebra

Generators are like “spanning sets” from linear algebra. For example, let $G = \mathbb{Z}^2$. Then $x = (1, 0)$ generates

$$x + x = (2, 0), x + x + x = (3, 0), \ldots,$$

and also

$$x^{-1} = (-1, 0) \quad x^{-1} + x^{-1} = (-2, 0), \ldots.$$

Throwing in $y = (0, 1)$ you also get

$$y^{-1} = (0, -1), x + y = (1, 1), \text{ etc.}$$

So $S = \{x, y\}$ generates \mathbb{Z}^2. The only additional information you need to define the group is that $xy = yx$. So

$$\mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle.$$

A minimum set of generators is like a basis from linear algebra.
CAUTION!! Minimum versus minimal: $\mathbb{Z} = \langle 1 \rangle = \langle 2, 3 \rangle$.

Example

Let G be the group

$$G = \langle a, b \mid a^2 = b^2 = e, aba = bab \rangle$$
Example

Let G be the group

$$G = \langle a, b \mid a^2 = b^2 = e, aba = bab \rangle$$

Now $a^{-1} = a$ and $b^{-1} = b$.
Example

Let G be the group

$$G = \langle a, b \mid a^2 = b^2 = e, aba = bab \rangle$$

Now $a^{-1} = a$ and $b^{-1} = b$.

Other ways of writing $aba = bab$:

$$abab = ba \quad ababa = b \quad ababab = e \quad bbbaaaba = bab \cdots$$
Example

Let G be the group

$$G = \langle a, b \mid a^2 = b^2 = e, aba = bab \rangle$$

Now $a^{-1} = a$ and $b^{-1} = b$.

Other ways of writing $aba = bab$:

$$abab = ba \quad ababa = b \quad ababab = e \quad bbbaaba = bab \cdots$$

Claim: G has 6 elements.
Presentation problem

Question: When are two presentations \(\langle S_1 \mid R_1 \rangle \) and \(\langle S_2 \mid R_2 \rangle \) actually presentations for the same group?
Presentation problem

Question: When are two presentations $\langle S_1 \mid R_1 \rangle$ and $\langle S_2 \mid R_2 \rangle$ actually presentations for the same group? HARD
Presentation problem

Question: When are two presentations \(\langle S_1 \mid R_1 \rangle \) and \(\langle S_2 \mid R_2 \rangle \) actually presentations for the same group? **HARD**

Claim: If we let \(a = s \) and \(b = rs \), then

\[
\langle a, b \mid a^2 = b^2 = e, aba = bab \rangle = \langle r, s \mid r^3 = s^2 = e, rs = sr^{-1} \rangle = D_6
\]
The symmetric group

Let X be a finite non-empty set, and let S_X be the set of bijections from the set to itself, i.e. the set of permutations of the elements.
The symmetric group

Let X be a finite non-empty set, and let S_X be the set of bijections from the set to itself, i.e. the set of permutations of the elements. For example, if $X = \{1, 2, 3\}$ then S_X contains

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \uparrow & \downarrow \\
1 & 2 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & 2 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \downarrow \\
1 & 2 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \uparrow & \downarrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \uparrow & \downarrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \uparrow & \uparrow \\
1 & \downarrow & \downarrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \downarrow \\
1 & \uparrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \downarrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \uparrow & \downarrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \downarrow \\
1 & \uparrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \uparrow & \downarrow \\
1 & \uparrow & \downarrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \uparrow & \uparrow \\
1 & \downarrow & \downarrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \uparrow & \uparrow \\
1 & \downarrow & \downarrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \uparrow & \downarrow \\
1 & \uparrow & \downarrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \downarrow \\
1 & \uparrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \downarrow \\
1 & \uparrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & \downarrow & \uparrow \\
1 & \downarrow & \uparrow \\
\end{array}
\]
The symmetric group

Let X be a finite non-empty set, and let S_X be the set of bijections from the set to itself, i.e. the set of permutations of the elements. For example, if $X = \{1, 2, 3\}$ then S_X contains

S_X forms a group under function composition.
The symmetric group

Let X be a finite non-empty set, and let S_X be the set of bijections from the set to itself, i.e. the set of permutations of the elements. For example, if $X = \{1, 2, 3\}$ then S_X contains

$$\begin{array}{ccc}
1 & 2 & 3 \\
\uparrow & \uparrow & \uparrow \\
1 & 2 & 3 \\
\end{array} \quad \begin{array}{ccc}
1 & 2 & 3 \\
\downarrow & \rightarrow & \downarrow \\
1 & 2 & 3 \\
\end{array} \quad \begin{array}{ccc}
1 & 2 & 3 \\
\rightarrow & \downarrow & \rightarrow \\
1 & 2 & 3 \\
\end{array}
$$

S_X forms a group under function composition.

- A permutation σ followed by another permutation τ is $\tau \circ \sigma$, which is itself a permutation (binary operation)
The symmetric group

Let X be a finite non-empty set, and let S_X be the set of bijections from the set to itself, i.e. the set of permutations of the elements. For example, if $X = \{1, 2, 3\}$ then S_X contains

S_X forms a group under function composition.

- A permutation σ followed by another permutation τ is $\tau \circ \sigma$, which is itself a permutation (binary operation)
- Function composition is associative.
The symmetric group

Let X be a finite non-empty set, and let S_X be the set of bijections from the set to itself, i.e. the set of permutations of the elements. For example, if $X = \{1, 2, 3\}$ then S_X contains

\[
\begin{array}{c}
\begin{array}{ccc}
1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow \\
\bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}
1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow \\
\bullet & \bullet & \bullet \\
\end{array} & \begin{array}{ccc}
1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow \\
\bullet & \bullet & \bullet \\
\end{array}
\end{array}
\]

S_X forms a group under function composition.

- A permutation σ followed by another permutation τ is $\tau \circ \sigma$, which is itself a permutation (binary operation).
- Function composition is associative.
- The bijection $x \mapsto x$ for all $x \in X$ serves as the identity.
The symmetric group

Let X be a finite non-empty set, and let S_X be the set of bijections from the set to itself, i.e. the set of permutations of the elements. For example, if $X = \{1, 2, 3\}$ then S_X contains

$$S_X \text{ forms a group under function composition.}$$

- A permutation σ followed by another permutation τ is $\tau \circ \sigma$, which is itself a permutation (binary operation)
- Function composition is associative.
- The bijection $x \mapsto x$ for all $x \in X$ serves as the identity.
- Every bijection is invertible.
The symmetric group

Let X be a finite non-empty set, and let S_X be the set of bijections from the set to itself, i.e. the set of permutations of the elements. For example, if $X = \{1, 2, 3\}$ then S_X contains

S_X forms a group under function composition.

- A permutation σ followed by another permutation τ is $\tau \circ \sigma$, which is itself a permutation (binary operation)
- Function composition is associative.
- The bijection $x \mapsto x$ for all $x \in X$ serves as the identity.
- Every bijection is invertible.

The group S_X is called the symmetric group on X.
The symmetric group

When $X = [n] = \{1, 2, \ldots, n\}$ we denote S_X by S_n, and call it the symmetric group of degree n.

Fact: It turns out that S_X is essentially the same group as $S_{|X|}$. (Later: they are isomorphic.)

Proposition: The order of S_n is $|S_n| = n!$.
The symmetric group

When $X = [n] = \{1, 2, \ldots, n\}$ we denote S_X by S_n, and call it the symmetric group of degree n.

Fact: It turns out that S_X is essentially the same group as $S_{|X|}$. (Later: they are *isomorphic*.)
The symmetric group

When $X = [n] = \{1, 2, \ldots, n\}$ we denote S_X by S_n, and call it the symmetric group of degree n.

Fact: It turns out that S_X is essentially the same group as $S_{|X|}$. (Later: they are *isomorphic*.)

Proposition

*The order of S_n is $|S_n| = n!$.***
Some notation

Permutations can be represented in many ways:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \]

means \(\sigma(1) = 3 \), \(\sigma(2) = 4 \), etc.
Some notation

Permutations can be represented in many ways:

$$\sigma = \begin{array}{ccccccccc}
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 & 2 & 3 & 4
\end{array}$$

means $\sigma(1) = 3$, $\sigma(2) = 4$, etc.

(Cauchy’s) two-line notation:

$$\sigma = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 4 & 2 & 1 & 7 & 6 & 5
\end{pmatrix}$$
Some notation

Permutations can be represented in many ways:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 \end{pmatrix} \]

means \(\sigma(1) = 3, \sigma(2) = 4, \) etc.

(Cauchy’s) two-line notation:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 2 & 1 & 7 & 6 & 5 \end{pmatrix} \]

One-line notation: \(\sigma = 3421765 \)
Permutations can be represented in many ways:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 2 & 1 & 7 & 6 & 5 \end{pmatrix} \] means \(\sigma(1) = 3, \sigma(2) = 4, \text{ etc.} \)

(Cauchy’s) two-line notation:

\[\sigma = (1\ 3\ 2\ 4)(5\ 7)(6) \text{ or just } (1\ 3\ 2\ 4)(5\ 7) \]

One-line notation: \(\sigma = 3421765 \)
Cycle notation:
Some notation

Permutations can be represented in many ways:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix} \]

means \(\sigma(1) = 3, \sigma(2) = 4 \), etc.

(Cauchy’s) two-line notation:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 2 & 1 & 7 & 6 & 5 \end{pmatrix} \]

One-line notation: \(\sigma = 3421765 \)

Cycle notation:

\[\sigma = (1 \ 3 \ 2 \ 4)(5 \ 7)(6) \]

denoted by \((1324)(57)(6)\)
or just \((1324)(57)\)
Multiplication of diagrams:

\[\sigma = \begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
1 & 2 & 3 & 4 & 5
\end{array} \quad \tau = \begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
1 & 2 & 3 & 4 & 5
\end{array} \]
Cycles

A cycle is a string of integers what represents the element of S_n that cyclically permutes these integers (and fixes all others).

Example: (435) is the permutation in S_n that sends 4 to 3, 3 to 5, 5 to 4, and everything else to itself.

Every permutation can be expressed as the product (composition) of cycles, usually in several ways.

Example: $(13) = (31) = (23)(12)(23)$ (draw the permutation diagrams)
Cycles

A cycle is a string of integers what represents the element of S_n that cyclically permutes these integers (and fixes all others). Specifically,

$$(a_1 a_2 \ldots a_\ell) \text{ sends } a_1 \mapsto a_2 \quad a_2 \mapsto a_3 \quad \vdots \quad a_\ell \mapsto a_1$$

Example: (435) is the permutation in S_n that sends 4 to 3, 3 to 5, 5 to 4, and everything else to itself. Every permutation can be expressed as the product (composition) of cycles, usually in several ways. Example: $(13) = (31) = (23)(12)(23)$.
A cycle is a string of integers what represents the element of S_n that cyclically permutes these integers (and fixes all others). Specifically,

$$(a_1 a_2 \ldots a_\ell)$$ sends

\[
\begin{align*}
 a_1 & \mapsto a_2 \\
 a_2 & \mapsto a_3 \\
 & \quad \vdots \\
 a_\ell & \mapsto a_1
\end{align*}
\]

Example: (435) is the permutation in S_n that sends 4 to 3, 3 to 5, 5 to 4, and everything else to itself.
Cycles

A cycle is a string of integers what represents the element of S_n that cyclically permutes these integers (and fixes all others). Specifically,

$$(a_1 a_2 \ldots a_\ell) \quad \text{sends} \quad \begin{align*}
a_1 & \mapsto a_2 \\
da_2 & \mapsto a_3 \\
& \quad \vdots \\
da_\ell & \mapsto a_1
\end{align*}$$

Example: (435) is the permutation in S_n that sends 4 to 3, 3 to 5, 5 to 4, and everything else to itself.

Every permutation can be expressed as the product (composition) of cycles, usually in several ways.
Cycles

A cycle is a string of integers what represents the element of S_n that cyclically permutes these integers (and fixes all others). Specifically,

$$(a_1 a_2 \ldots a_\ell) \quad \text{sends} \quad \begin{align*}
a_1 & \mapsto a_2 \\
a_2 & \mapsto a_3 \\
& \quad \quad \quad \vdots \\
a_\ell & \mapsto a_1
\end{align*}$$

Example: \((435)\) is the permutation in S_n that sends 4 to 3, 3 to 5, 5 to 4, and everything else to itself.

Every permutation can be expressed as the product (composition) of cycles, usually in several ways.

Example: \((13) = (31) = (23)(12)(23)\)
(draw the permutation diagrams)
Algorithm for writing a permutation in cycles:

1. Start with “(1”.
2. If \(a \) is the last element of the cycle, either:
 (i) If \(\sigma(a) \) is the first element of the cycle, close the cycle. If there are any numbers left unused, start a new cycle with the least available number.
 (ii) If \(\sigma(a) \) is the not first element of the cycle, add \(\sigma(a) \) next in the cycle.
3. Repeat 2 until all numbers \(1, \ldots, n \) appear in some cycle.
4. Delete any cycles of length 1.

\[
\sigma = \begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\] \quad \tau = \begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]
Multiplying cycles:

Algorithm:
1. Start the first cycle of your answer with $a = 1$.
2. If the last number that you wrote in your answer is a, let $x = a$.
3. Look for the rightmost cycle with x in it, and reset x to its successor in that cycle.
4. Always moving left from cycle-to-cycle, look for the next cycle with x in it and replace it with its successor.
5. When you run out of cycles, write x as the successor of a in your answer, unless...
6. If x was the first element of the current cycle of your answer, then close the cycle, and start a new one with the least number not appearing yet in your answer.

If $\sigma = (1352)$ and $\tau = (123)(45)$ as before, then $\sigma\tau = (1352)(123)(45) =$
Multiplying cycles:

Algorithm:

1. Start the first cycle of your answer with \(a = 1 \).
2. If the last number that you wrote in your answer is \(a \), let \(x = a \).
3. Look for the rightmost cycle with a \(x \) in it, and reset \(x \) to its successor in that cycle.
4. Always moving left from cycle-to-cycle, look for the next cycle with \(x \) in it and replace it with it’s successor.
5. When you run out of cycles, write \(x \) as the successor of \(a \) in your answer, unless...
6. If \(x \) was the first element of the current cycle of your answer, then close the cycle, and start a new one with the least number not appearing yet in your answer.

If \(\sigma = (1352) \) and \(\tau = (123)(45) \) as before, then

\[
\sigma \tau = (1352)(123)(45) =
\]
You try:

(a) Write in cycle notation:

\[\sigma_1 = (1, 2, 3, 4, 5, 6, 7) \]

\[\sigma_2 = (1, 2, 3, 4, 5, 6, 7) \]

(b) Draw the maps (like the diagrams above) for

\[\tau_1 = (1, 3, 7)(5, 2) \]

\[\tau_2 = (1, 2)(3, 4)(5, 6) \]

(c) Use the cycle notation to compute \(\sigma_1 \sigma_2 \) and \(\tau_2 \tau_1 \). Check using the diagrams (stack \(\sigma_1 \) on top of \(\sigma_2 \) and resolve).