Algebraic structures

A group is a set G with a binary operation \ast satisfying associativity, and the existence of an identity and inverses.
Algebraic structures

* A **group** is a set G with a binary operation \star satisfying associativity, and the existence of an identity and inverses.
* A **monoid** is a set M with a binary operation \star satisfying associativity and the existence of an identity. (e.g. (\mathbb{Z}, \times))
Algebraic structures

* A **group** is a set G with a binary operation \star satisfying associativity, and the existence of an identity and inverses.

* A **monoid** is a set M with a binary operation \star satisfying associativity and the existence of an identity. (e.g. (\mathbb{Z}, \times))

* A **semigroup** is a set S with a binary operation \star satisfying associativity (e.g. $(\mathbb{Z}_{>0}, +)$).
Algebraic structures

* A group is a set G with a binary operation \ast satisfying associativity, and the existence of an identity and inverses.
* A monoid is a set M with a binary operation \ast satisfying associativity and the existence of an identity. (e.g. (\mathbb{Z}, \times))
* A semigroup is a set S with a binary operation \ast satisfying associativity (e.g. $(\mathbb{Z}_{>0}, +)$).
* A field is a set F with two binary operations, $+$ and \times, such that $(F, +)$ and $(F - \{0\}, \times)$ are abelian groups, and the distributive property holds between $+$ and \times. (e.g. \mathbb{R} or $\mathbb{Z}/p\mathbb{Z}$)
Algebraic structures

* A **group** is a set G with a binary operation \star satisfying associativity, and the existence of an identity and inverses.

* A **monoid** is a set M with a binary operation \star satisfying associativity and the existence of an identity. (e.g. (\mathbb{Z}, \times))

* A **semigroup** is a set S with a binary operation \star satisfying associativity (e.g. $(\mathbb{Z}_{>0}, +)$).

* A **field** is a set F with two binary operations, $+$ and \times, such that $(F, +)$ and $(F - \{0\}, \times)$ are abelian groups, and the distributive property holds between $+$ and \times. (e.g. \mathbb{R} or $\mathbb{Z}/p\mathbb{Z}$)

* A **vector space** (over a field F) is a an abelian group $(V, +)$ that has a faithful action on it by F that satisfies the distributive properties. (i.e. for $f \in F$, $u, v \in V$, $f \cdot (u + v) = f \cdot u + f \cdot v$). (e.g. $F = \mathbb{R}$, $V = \mathbb{R}^n$)
Algebraic structures

* A **group** is a set G with a binary operation \star satisfying associativity, and the existence of an identity and inverses.
* A **monoid** is a set M with a binary operation \star satisfying associativity and the existence of an identity. (e.g. (\mathbb{Z}, \times))
* A **semigroup** is a set S with a binary operation \star satisfying associativity (e.g. $(\mathbb{Z}_{>0}, +)$).
* A **field** is a set F with two binary operations, $+$ and \times, such that $(F, +)$ and $(F - \{0\}, \times)$ are abelian groups, and the distributive property holds between $+$ and \times. (e.g. \mathbb{R} or $\mathbb{Z}/p\mathbb{Z}$)
* A **vector space** (over a field F) is a an abelian group $(V, +)$ that has a faithful action on it by F that satisfies the distributive properties. (i.e. for $f \in F, u, v \in V, f \cdot (u + v) = f \cdot u + f \cdot v$). (e.g. $F = \mathbb{R}, V = \mathbb{R}^n$)
* A **ring** (with identity) is a set R with two binary operations, $+$ and \times, such that $(R, +)$ is an abelian group, and (R, \times) is a monoid, and the distributive property holds. (e.g. \mathbb{Z} or $\mathbb{Z}[x]$)
Algebraic structures

* A **group** is a set G with a binary operation \ast satisfying associativity, and the existence of an identity and inverses.

* A **monoid** is a set M with a binary operation \ast satisfying associativity and the existence of an identity. (e.g. (\mathbb{Z}, \times))

* A **semigroup** is a set S with a binary operation \ast satisfying associativity (e.g. $(\mathbb{Z}_{\geq 0}, +)$).

* A **field** is a set F with two binary operations, $+$ and \times, such that $(F, +)$ and $(F - \{0\}, \times)$ are abelian groups, and the distributive property holds between $+$ and \times. (e.g. \mathbb{R} or $\mathbb{Z}/p\mathbb{Z}$)

* A **vector space** (over a field F) is a an abelian group $(V, +)$ that has a faithful action on it by F that satisfies the distributive properties. (i.e. for $f \in F, \ u, \ v \in V, f \cdot (u + v) = f \cdot u + f \cdot v$). (e.g. $F = \mathbb{R}, \ V = \mathbb{R}^n$)

* A **ring** (with identity) is a set R with two binary operations, $+$ and \times, such that $(R, +)$ is an abelian group, and (R, \times) is a monoid, and the distributive property holds. (e.g. \mathbb{Z} or $\mathbb{Z}[x]$)

* An **algebra** (over a field F) is a ring A such that $(A, +)$ forms a vector space over F and the distributive properties hold. (e.g. $F = \mathbb{R}, \ A = \mathbb{R}[x]$)
Algebraic structures

* A **group** is a set G with a binary operation \ast satisfying associativity, and the existence of an identity and inverses.

* A **monoid** is a set M with a binary operation \ast satisfying associativity and the existence of an identity. (e.g. (\mathbb{Z}, \times))

* A **semigroup** is a set S with a binary operation \ast satisfying associativity (e.g. $(\mathbb{Z}_{>0}, +)$).

* A **field** is a set F with two binary operations, $+$ and \times, such that $(F, +)$ and $(F - \{0\}, \times)$ are abelian groups, and the distributive property holds between $+$ and \times. (e.g. \mathbb{R} or $\mathbb{Z}/p\mathbb{Z}$)

* A **vector space** (over a field F) is a an abelian group $(V, +)$ that has a faithful action on it by F that satisfies the distributive properties. (i.e. for $f \in F$, $u, v \in V$, $f \cdot (u + v) = f \cdot u + f \cdot v$). (e.g. $F = \mathbb{R}$, $V = \mathbb{R}^n$)

* A **ring** (with identity) is a set R with two binary operations, $+$ and \times, such that $(R, +)$ is an abelian group, and (R, \times) is a monoid, and the distributive property holds. (e.g. \mathbb{Z} or $\mathbb{Z}[x]$)

* An **algebra** (over a field F) is a ring A such that $(A, +)$ forms a vector space over F and the distributive properties hold. (e.g. $F = \mathbb{R}$, $A = \mathbb{R}[x]$)

* A **module** (over a ring R) is an abelian group $(M, +)$ with an action from R that satisfies the distributive properties. (e.g. $R = \mathbb{Z}$ acts on $M = \mathbb{Z}/n\mathbb{Z}$ by multiplication)
Algebraic structures

* A group is a set G with a binary operation \star satisfying associativity, and the existence of an identity and inverses.

* A monoid is a set M with a binary operation \star satisfying associativity and the existence of an identity. (e.g. (\mathbb{Z}, \times))

* A semigroup is a set S with a binary operation \star satisfying associativity (e.g. $(\mathbb{Z}_{>0}, +)$).

* A field is a set F with two binary operations, $+$ and \times, such that $(F, +)$ and $(F - \{0\}, \times)$ are abelian groups, and the distributive property holds between $+$ and \times. (e.g. \mathbb{R} or $\mathbb{Z}/p\mathbb{Z}$)

* A vector space (over a field F) is a an abelian group $(V, +)$ that has a faithful action on it by F that satisfies the distributive properties. (i.e. for $f \in F, u, v \in V, f \cdot (u + v) = f \cdot u + f \cdot v$). (e.g. $F = \mathbb{R}, V = \mathbb{R}^n$)

* A ring (with identity) is a set R with two binary operations, $+$ and \times, such that $(R, +)$ is an abelian group, and (R, \times) is a monoid, and the distributive property holds. (e.g. \mathbb{Z} or $\mathbb{Z}[x]$)

* An algebra (over a field F) is a ring A such that $(A, +)$ forms a vector space over F and the distributive properties hold. (e.g. $F = \mathbb{R}, A = \mathbb{R}[x]$)

* A module (over a ring R) is an abelian group $(M, +)$ with an action from R that satisfies the distributive properties. (e.g. $R = \mathbb{Z}$ acts on $M = \mathbb{Z}/n\mathbb{Z}$ by multiplication) ...and many many others.
Relating different algebraic structures:

one binary operation

A **semigroup** is a set S with a binary operation \star satisfying associativity.

A **monoid** is a semigroup (M, \star) that has an identity element.

A **group** is a monoid (G, \star) that has an inverse for every element.

\[
\{ \text{groups} \} \subset \{ \text{monoids} \} \subset \{ \text{semigroups} \}
\]
Relating different algebraic structures: two binary operations

A ring (with identity) is a set R with two binary operations, $+$ and \times, such that $(R, +)$ is an abelian group, and (R, \times) is a monoid, and the distributive property holds.

A field is a ring R where $(R - \{0\}, \times)$ is an abelian group.

An algebra (over a field F) is a ring A such that $(A, +)$ forms a vector space over F and the distributive properties hold.

\[
\{ \text{fields} \} \subset \{ \text{rings w/ 1} \} \subset \{ \text{groups} \}
\]

\[
\{ \text{algebras} \} \subset \{ \text{rings w/ 1} \} \subset \{ \text{groups} \}
\]
Relating different algebraic structures: actions

A vector space (over a field F) is a an abelian group $(V, +)$ that has a faithful action on it by F that satisfies the distributive properties.

An algebra (over a field F) is a ring A such that $(A, +)$ forms a vector space over F and the distributive properties hold.

A module (over a ring R) is an abelian group $(M, +)$ with an action from R that satisfies the distributive properties.

\[
\{ \text{algebras} \} \subset \{ \text{vector spaces} \} \subset \{ \text{modules} \} \subset \{ \text{groups} \}
\]
A ring R is a set together with two binary operations $+$ and \times such that

(a) $(R, +)$ is an abelian group,
(b) \times is associative: $(a \times b) \times c = a \times (b \times c)$,
 (i.e. (R, \times) is a semigroup)
(c) the distributive laws hold for R

$$(a + b) \times c = (a \times c) + (b \times c) \quad \text{and} \quad a \times (b + c) = (a \times b) + (a \times c).$$
PART II: RING THEORY

A ring R is a set together with two binary operations $+$ and \times such that

(a) $(R, +)$ is an abelian group,
(b) \times is associative: $(a \times b) \times c = a \times (b \times c)$,
 (i.e. (R, \times) is a semigroup)
(c) the distributive laws hold for R

$$(a + b) \times c = (a \times c) + (b \times c) \quad \text{and} \quad a \times (b + c) = (a \times b) + (a \times c).$$

The ring R is said to have an identity (R is a ring with identity) if there is an element $1 \in R$ with

$$1 \times a = a \times 1 = a \quad \text{for all} \ a \in R.$$
 (i.e. (R, \times) is a monoid)
A ring R is a set together with two binary operations $+$ and \times such that

(a) $(R, +)$ is an abelian group,
(b) \times is associative: $(a \times b) \times c = a \times (b \times c)$,
(i.e. (R, \times) is a semigroup)
(c) the *distributive laws* hold for R

$$(a + b) \times c = (a \times c) + (b \times c) \quad \text{and} \quad a \times (b + c) = (a \times b) + (a \times c).$$

The ring R is said to have an identity (R is a ring with identity) if there is an element $1 \in R$ with

$$1 \times a = a \times 1 = a \quad \text{for all} \ a \in R.$$
(i.e. (R, \times) is a monoid)

A ring R is a division ring if $(R - \{0\}, \times)$ is a group.
(i.e. R has 1 and multiplicative inverses)
A ring \(R \) is a set together with two binary operations \(+\) and \(\times\) such that

(a) \((R, +)\) is an abelian group,

(b) \(\times\) is associative: \((a \times b) \times c = a \times (b \times c)\),

\(\text{(i.e. } (R, \times) \text{ is a semigroup)}\)

(c) the **distributive laws** hold for \(R \)

\[(a + b) \times c = (a \times c) + (b \times c) \quad \text{and} \quad a \times (b + c) = (a \times b) + (a \times c).\]

The ring \(R \) is said to have an **identity** (\(R \) is a **ring with identity**) if there is an element \(1 \in R\) with

\[1 \times a = a \times 1 = a \quad \text{for all } a \in R.\]

\(\text{(i.e. } (R, \times) \text{ is a monoid)}\)

A ring \(R \) is a **division ring** if \((R - \{0\}, \times)\) is a group.

\(\text{(i.e. } R \text{ has 1 and multiplicative inverses)}\)

A ring \(R \) is **commutative** if \((R, \times)\) is commutative.
PART II: RING THEORY

A ring \(R \) is a set together with two binary operations \(+ \) and \(\times \) such that

(a) \((R,+)\) is an abelian group,
(b) \(\times\) is associative: \((a \times b) \times c = a \times (b \times c)\),

(c) the distributive laws hold for \(R \)

\[
(a + b) \times c = (a \times c) + (b \times c) \quad \text{and} \quad a \times (b + c) = (a \times b) + (a \times c). \]

The ring \(R \) is said to have an identity (\(R \) is a ring with identity) if there is an element \(1 \in R \) with

\[
1 \times a = a \times 1 = a \quad \text{for all} \ a \in R. \]

A ring \(R \) is a division ring if \((R - \{0\}, \times)\) is a group.

A ring \(R \) is commutative if \((R, \times)\) is commutative.

A commutative division ring is a field.
A ring R is a set together with two binary operations $+$ and \times such that

(a) $(R, +)$ is an abelian group,
(b) \times is associative: $(a \times b) \times c = a \times (b \times c)$,
 (i.e. (R, \times) is a semigroup)
(c) the distributive laws hold for R

$$ (a + b) \times c = (a \times c) + (b \times c) \quad \text{and} \quad a \times (b + c) = (a \times b) + (a \times c). $$

The ring R is said to have an identity (R is a ring with identity) if there is an element $1 \in R$ with

$$ 1 \times a = a \times 1 = a \quad \text{for all} \quad a \in R. $$

(i.e. (R, \times) is a monoid)

A ring R is a division ring if $(R - \{0\}, \times)$ is a group.
(i.e. R has 1 and multiplicative inverses)

A ring R is commutative if (R, \times) is commutative.

A commutative division ring is a field.

We usually write ab instead of $a \times b$.

Some favorite examples

1. Since $\mathbb{Z}/p\mathbb{Z}$, \mathbb{Q}, \mathbb{R}, and \mathbb{C} are all fields, they are also rings, rings with 1, commutative rings, and division rings.
Some favorite examples

1. Since \(\mathbb{Z}/p\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) are all fields, they are also rings, rings with 1, commutative rings, and division rings.

2. \(\mathbb{Z} \) and \(\mathbb{Z}/n\mathbb{Z} \) are commutative rings with 1, but not a division rings.
Some favorite examples

1. Since $\mathbb{Z}/p\mathbb{Z}$, \mathbb{Q}, \mathbb{R}, and \mathbb{C} are all fields, they are also rings, rings with 1, commutative rings, and division rings.

2. \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ are commutative rings with 1, but not a division rings.

3. $M_n(F) = \{n \times n \text{ matrices with entries in the field } F\}$ is a ring with 1. It is not commutative, nor is it a division ring.
Some favorite examples

1. Since $\mathbb{Z}/p\mathbb{Z}$, \mathbb{Q}, \mathbb{R}, and \mathbb{C} are all fields, they are also rings, rings with 1, commutative rings, and division rings.

2. \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ are commutative rings with 1, but not a division rings.

3. $M_n(F) = \{n \times n$ matrices with entries in the field $F\}$ is a ring with 1. It is not commutative, nor is it a division ring. In fact, $M_n(R)$ is a ring for R a ring as well.
Some favorite examples

1. Since \(\mathbb{Z}/p\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) are all fields, they are also rings, rings with 1, commutative rings, and division rings.

2. \(\mathbb{Z} \) and \(\mathbb{Z}/n\mathbb{Z} \) are commutative rings with 1, but not a division rings.

3. \(M_n(F) = \{n \times n \text{ matrices with entries in the field } F\} \) is a ring with 1. It is not commutative, nor is it a division ring. In fact, \(M_n(R) \) is a ring for \(R \) a ring as well.

4. If \(R \) is a commutative ring, then so are polynomials: \(R[x] = \{r_0 + r_1x + \cdots + r_nx^n \mid r_i \in R, n \in \mathbb{Z}_{\geq 0}\} \), power series: \(R[[x]] = \{r_0 + r_1x + \cdots \mid r_i \in R\} \), Laurent polynomials: \(R[x, x^{-1}] = \{r_mx^m + r_{m+1}x^{m+1} + \cdots + r_nx^n \mid r_i \in R, m \leq n \in \mathbb{Z}\} \), Laurent series: \(R((x)) = \{r_mx^m + r_{m+1}x^{m+1} + \cdots \mid r_i \in R, m \in \mathbb{Z}\} \).
Some favorite examples

1. Since $\mathbb{Z}/p\mathbb{Z}$, \mathbb{Q}, \mathbb{R}, and \mathbb{C} are all fields, they have also rings, rings with 1, commutative rings, and division rings.

2. \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ are commutative rings with 1, but not a division ring.

3. $M_n(F) = \{n \times n$ matrices with entries in the field $F\}$ is a ring with 1. It is not commutative, nor is it a division ring. In fact, $M_n(R)$ is a ring for R a ring as well.

4. If R is a commutative ring, then so are polynomials:

$$R[x] = \{r_0 + r_1 x + \cdots + r_n x^n \mid r_i \in R, n \in \mathbb{Z}_{\geq 0}\},$$

power series:

$$R[[x]] = \{r_0 + r_1 x + \cdots \mid r_i \in R\},$$

Laurent polynomials:

$$R[x, x^{-1}] = \{r_m x^m + r_{m+1} x^{m+1} + \cdots + r_n x^n \mid r_i \in R, m \leq n \in \mathbb{Z}\},$$

Laurent series:

$$R((x)) = \{r_m x^m + r_{m+1} x^{m+1} + \cdots \mid r_i \in R, m \in \mathbb{Z}\}.$$

Tip: For every new definition or theorem, ask yourself what it means for

$$\mathbb{R}, \mathbb{Z}, \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/6\mathbb{Z}, M_2(\mathbb{R}), \mathbb{R}[x], \mathbb{Z}[x], \text{ and } \mathbb{Z}/6\mathbb{Z}[x].$$
Some favorite examples

3. For a field F, $M_n(F) = \{n \times n$ matrices with entries in $F\}$.

4. For a commutative ring R,
 $$R[x] = \{r_0 + r_1 x + \cdots + r_n x^n \mid r_i \in R, n \in \mathbb{Z}_{\geq 0}\}.$$
Some favorite examples

3. For a field F, $M_n(F) = \{n \times n \text{ matrices with entries in } F\}$.

4. For a commutative ring R,
 \[R[x] = \{r_0 + r_1 x + \cdots + r_n x^n \mid r_i \in R, n \in \mathbb{Z}_{\geq 0}\}. \]

Note that $M_n(F)$ and $R[x]$ are both rings whose elements are functions. In both examples, the binary operation $+$ is function addition:

\[(M_1 + M_2)(v) = M_1(v) + M_2(v) \text{ and } (f + g)(x) = f(x) + g(x).\]
Some favorite examples

3. For a field F, $M_n(F) = \{n \times n \text{ matrices with entries in } F\}$.

4. For a commutative ring R,

 $$R[x] = \{r_0 + r_1 x + \cdots + r_n x^n \mid r_i \in R, n \in \mathbb{Z}_{\geq 0}\}.$$

Note that $M_n(F)$ and $R[x]$ are both rings whose elements are functions. In both examples, the binary operation $+$ is function addition:

- $(M_1 + M_2)(v) = M_1(v) + M_2(v)$ and $(f + g)(x) = f(x) + g(x)$.

(Ok because the images of the functions are additive groups.)
Some favorite examples

3. For a field F, $M_n(F) = \{n \times n$ matrices with entries in $F\}$.

4. For a commutative ring R,
 \[R[x] = \{r_0 + r_1 x + \cdots + r_n x^n \mid r_i \in R, n \in \mathbb{Z}_{\geq 0}\}. \]

Note that $M_n(F)$ and $R[x]$ are both rings whose elements are functions. In both examples, the binary operation $+$ is function addition:

\[(M_1 + M_2)(v) = M_1(v) + M_2(v) \] and \[(f + g)(x) = f(x) + g(x). \]
(Ok because the images of the functions are additive groups.)

However, the binary operation playing the role of \times is fundamentally different between the two examples!
Some favorite examples

3. For a field F, $M_n(F) = \{n \times n$ matrices with entries in $F\}$.

4. For a commutative ring R,
 $$R[x] = \{r_0 + r_1 x + \cdots + r_n x^n \mid r_i \in R, n \in \mathbb{Z}_{\geq 0}\}.$$

Note that $M_n(F)$ and $R[x]$ are both rings whose elements are functions.

In both examples, the binary operation $+$ is function addition:

$$(M_1 + M_2)(v) = M_1(v) + M_2(v) \text{ and } (f + g)(x) = f(x) + g(x).$$

(Ok because the images of the functions are additive groups.)

However, the binary operation playing the role of \times is fundamentally different between the two examples!

In $M_n(F)$, “multiplication” is function composition:

matrix multiplication is the same as linear function composition,

i.e. $(M_1 M_2)(v) = M_1(M_2(v))$.
Some favorite examples

3. For a field F, $M_n(F) = \{n \times n \text{ matrices with entries in } F\}$.

4. For a commutative ring R,

 $R[x] = \{r_0 + r_1 x + \cdots + r_n x^n \mid r_i \in R, n \in \mathbb{Z}_{\geq 0}\}$.

Note that $M_n(F)$ and $R[x]$ are both rings whose elements are functions. In both examples, the binary operation $+$ is function addition:

$(M_1 + M_2)(v) = M_1(v) + M_2(v)$ and $(f + g)(x) = f(x) + g(x)$.

(Ok because the images of the functions are additive groups.)

However, the binary operation playing the role of \times is fundamentally different between the two examples!

In $M_n(F)$, “multiplication” is function composition:

matrix multiplication is the same as linear function composition, i.e. $(M_1M_2)(v) = M_1(M_2(v))$.

But in $R[x]$, “multiplication” is function multiplication:

the image of the product is the product of the images, i.e. $(fg)(x) = f(x)g(x)$.
Some favorite examples

3. For a field F, $M_n(F) = \{n \times n$ matrices with entries in $F\}$.

4. For a commutative ring R,

 $R[x] = \{r_0 + r_1 x + \cdots + r_n x^n \mid r_i \in R, n \in \mathbb{Z}_{\geq 0}\}$.

Note that $M_n(F)$ and $R[x]$ are both rings whose elements are functions. In both examples, the binary operation $+$ is function addition:

$(M_1 + M_2)(v) = M_1(v) + M_2(v)$ and $(f + g)(x) = f(x) + g(x)$.

(Ok because the images of the functions are additive groups.)

However, the binary operation playing the role of \times is fundamentally different between the two examples!

In $M_n(F)$, “multiplication” is function composition:

matrix multiplication is the same as linear function composition, i.e. $(M_1 M_2)(v) = M_1(M_2(v))$.

But in $R[x]$, “multiplication” is function multiplication:

the image of the product is the product of the images, i.e. $(fg)(x) = f(x)g(x)$.

(Can’t do this unless the image of the functions is a ring!)
Rings of functions

In general, let A be a ring, and let X be a set. Then the set of functions $R = \{ f : X \rightarrow A \}$ is a ring under the binary operations

$$(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (fg)(x) = f(x)g(x).$$
Rings of functions

In general, let A be a ring, and let X be a set. Then the set of functions $R = \{ f : X \to A \}$ is a ring under the binary operations

$$(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (f g)(x) = f(x)g(x). \quad (*)$$

If A has 1, then so does R, given by $1_R : x \mapsto 1.$
Rings of functions

In general, let A be a ring, and let X be a set. Then the set of functions $R = \{ f : X \to A \}$ is a ring under the binary operations

$$(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (fg)(x) = f(x)g(x).$$

(*)

If A has 1, then so does R, given by $1_R : x \mapsto 1$.
If A is commutative, then so is R.

A subring of the A is a subgroup of R that is closed under multiplication.

Think: what are some subrings of our favorite examples?

Subring criterion: $S \subseteq R$ is a subring iff $S \neq \emptyset$, and S is closed under subtraction and multiplication.
Rings of functions

In general, let A be a ring, and let X be a set. Then the set of functions $R = \{ f : X \to A \}$ is a ring under the binary operations

$$(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (fg)(x) = f(x)g(x). \quad (*)$$

If A has 1, then so does R, given by $1_R : x \mapsto 1$.
If A is commutative, then so is R.
However, the only those functions for which $f(x) \neq 0 \ \forall x \in X$ are multiplicatively invertible, so R is never a division ring.
Rings of functions

In general, let \(A \) be a ring, and let \(X \) be a set. Then the set of functions \(R = \{ f : X \to A \} \) is a ring under the binary operations

\[
(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (fg)(x) = f(x)g(x). \quad (\ast)
\]

If \(A \) has 1, then so does \(R \), given by \(1_R : x \mapsto 1 \).

If \(A \) is commutative, then so is \(R \).

However, the only those functions for which \(f(x) \neq 0 \ \forall x \in X \) are multiplicatively invertible, so \(R \) is never a division ring.

Putting restrictions on the kinds of functions in your set can sometimes also produce rings (e.g. polynomial functions).
Rings of functions

In general, let A be a ring, and let X be a set. Then the set of functions $R = \{ f : X \rightarrow A \}$ is a ring under the binary operations

\[(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (fg)(x) = f(x)g(x). \quad (*)\]

Putting restrictions on the kinds of functions in your set can sometimes also produce rings (e.g. polynomial functions).

Example: Which of the following form rings under the binomial operations given in $(*)$? Why or why not?

(a) \{ differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$ \} \hspace{1cm} (\text{$f'(x)$ is defined $\forall x \in \mathbb{R}$})
(b) \{ even functions $\mathbb{R} \rightarrow \mathbb{R}$ \} \hspace{1cm} (\text{$f(-x) = f(x) \ \forall x \in \mathbb{R}$})
(c) \{ odd functions $\mathbb{R} \rightarrow \mathbb{R}$ \} \hspace{1cm} (\text{$f(-x) = -f(x) \ \forall x \in \mathbb{R}$})
(d) \{ strictly positive functions $\mathbb{R} \rightarrow \mathbb{R}$ \} \hspace{1cm} (\text{$f(x) > 0 \ \forall x \in \mathbb{R}$})
(e) \{ non-zero functions $\mathbb{R} \rightarrow \mathbb{R}$ \} \hspace{1cm} (\text{$f(x) \neq 0 \ \forall x \in \mathbb{R}$})

A subring of a ring R is a subgroup of R that is closed under multiplication.

Think: what are some subrings of our favorite examples?

Subring criterion: $S \subseteq R$ is a subring iff S is closed under subtraction and multiplication.
Rings of functions

In general, let A be a ring, and let X be a set. Then the set of functions $R = \{ f : X \to A \}$ is a ring under the binary operations

$$(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (f g)(x) = f(x) g(x). \quad (\ast)$$

Putting restrictions on the kinds of functions in your set can sometimes also produce rings (e.g. polynomial functions).

Example: Which of the following form rings under the binomial operations given in (\ast)? Why or why not?

(a) $\{ \text{differentiable functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{2cm} ($f'(x)$ is defined $\forall x \in \mathbb{R}$)

(b) $\{ \text{even functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{2cm} ($f(-x) = f(x) \forall x \in \mathbb{R}$)

(c) $\{ \text{odd functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{2cm} ($f(-x) = -f(x) \forall x \in \mathbb{R}$)

(d) $\{ \text{strictly positive functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{2cm} ($f(x) > 0 \forall x \in \mathbb{R}$)

(e) $\{ \text{non-zero functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{2cm} ($f(x) \neq 0 \forall x \in \mathbb{R}$)

A subring of the ring R is a subgroup of R that is closed under multiplication.
Rings of functions

In general, let A be a ring, and let X be a set. Then the set of functions $R = \{ f : X \to A \}$ is a ring under the binary operations

\[(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (fg)(x) = f(x)g(x). \quad (*)\]

Putting restrictions on the kinds of functions in your set can sometimes also produce rings (e.g. polynomial functions).

Example: Which of the following form rings under the binomial operations given in $(*)$? Why or why not?

(a) \{ differentiable functions $\mathbb{R} \to \mathbb{R}$ \} \quad (f'(x) \text{ is defined } \forall x \in \mathbb{R})

(b) \{ even functions $\mathbb{R} \to \mathbb{R}$ \} \quad (f(-x) = f(x) \forall x \in \mathbb{R})

(c) \{ odd functions $\mathbb{R} \to \mathbb{R}$ \} \quad (f(-x) = -f(x) \forall x \in \mathbb{R})

(d) \{ strictly positive functions $\mathbb{R} \to \mathbb{R}$ \} \quad (f(x) > 0 \forall x \in \mathbb{R})

(e) \{ non-zero functions $\mathbb{R} \to \mathbb{R}$ \} \quad (f(x) \neq 0 \forall x \in \mathbb{R})

A **subring** of the a R is a subgroup of R that is closed under multiplication. **Think:** what are some subrings of our fav examples?
Rings of functions

In general, let A be a ring, and let X be a set. Then the set of functions $R = \{ f : X \to A \}$ is a ring under the binary operations

$$(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (fg)(x) = f(x)g(x). \quad (*)$$

Putting restrictions on the kinds of functions in your set can sometimes also produce rings (e.g. polynomial functions).

Example: Which of the following form rings under the binomial operations given in $(*)$? Why or why not?

(a) $\{ \text{differentiable functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{1cm} ($f'(x)$ is defined $\forall x \in \mathbb{R}$)

(b) $\{ \text{even functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{1cm} ($f(-x) = f(x) \forall x \in \mathbb{R}$)

(c) $\{ \text{odd functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{1cm} ($f(-x) = -f(x) \forall x \in \mathbb{R}$)

(d) $\{ \text{strictly positive functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{1cm} ($f(x) > 0 \forall x \in \mathbb{R}$)

(e) $\{ \text{non-zero functions } \mathbb{R} \to \mathbb{R} \}$ \hspace{1cm} ($f(x) \neq 0 \forall x \in \mathbb{R}$)

A **subring** of the a R is a subgroup of R that is closed under multiplication. **Think**: what are some subrings of our fav examples?

Subring criterion:
Rings of functions

In general, let A be a ring, and let X be a set. Then the set of functions $R = \{ f : X \rightarrow A \}$ is a ring under the binary operations

$$ (f + g)(x) = f(x) + g(x) \quad \text{and} \quad (fg)(x) = f(x)g(x). \quad (*) $$

Putting restrictions on the kinds of functions in your set can sometimes also produce rings (e.g. polynomial functions).

Example: Which of the following form rings under the binomial operations given in $(*)$? Why or why not?

(a) $\{ \text{differentiable functions } \mathbb{R} \rightarrow \mathbb{R} \}$ \quad ($f'(x)$ is defined $\forall x \in \mathbb{R}$)

(b) $\{ \text{even functions } \mathbb{R} \rightarrow \mathbb{R} \}$ \quad ($f(-x) = f(x) \ \forall x \in \mathbb{R}$)

(c) $\{ \text{odd functions } \mathbb{R} \rightarrow \mathbb{R} \}$ \quad ($f(-x) = -f(x) \ \forall x \in \mathbb{R}$)

(d) $\{ \text{strictly positive functions } \mathbb{R} \rightarrow \mathbb{R} \}$ \quad ($f(x) > 0 \ \forall x \in \mathbb{R}$)

(e) $\{ \text{non-zero functions } \mathbb{R} \rightarrow \mathbb{R} \}$ \quad ($f(x) \neq 0 \ \forall x \in \mathbb{R}$)

A subring of the a R is a subgroup of R that is closed under multiplication. **Think:** what are some subrings of our fav examples?

Subring criterion: $S \subseteq R$ is a subring iff $S \neq \emptyset$, and S is closed under subtraction and multiplication.
Mixing the two binary operations

As usual, we denote

0 is the additive identity,
1 is the multiplicative identity (if it exists),
\(-a\) is the additive inverse to \(a\), and
\(a^{-1}\) is the multiplicative inverse to \(a\) (if it exists).
Mixing the two binary operations

As usual, we denote

- 0 is the additive identity,
- 1 is the multiplicative identity (if it exists),
- $-a$ is the additive inverse to a, and
- a^{-1} is the multiplicative inverse to a (if it exists).

Proposition

Let R be a ring.

1. $0a = a0 = 0$ for all $a \in R$.
2. $(-a)b = a(-b) = -(ab)$ for all $a, b \in R$.
3. $(-a)(-b) = ab$ for all $a, b \in R$.
4. If R has an identity 1, the identity is unique and $-a = (-1)a$.
Definition
Let R be a ring.

1. A nonzero element $a \in R$ is called a zero divisor if there is a nonzero element $b \in R$ such that $ab = 0$ or $ba = 0$.

Think: what are some zero divisors of our fav examples?

2. Assume R has identity $1 \neq 0$. An element $u \in R$ is called a unit in R if there is some $v \in R$ such that $uv = vu = 1$.

The set of units R^\times is a group (under \cdot) called group of units of R.

Think: what are the groups of units in our fav examples?

3. A commutative ring with identity $1 \neq 0$ is called an integral domain if it has no zero divisors.

Think: which our fav examples are integral domains?
Definition

Let R be a ring.

1. A nonzero element $a \in R$ is called a zero divisor if there is a nonzero element $b \in R$ such that $ab = 0$ or $ba = 0$.

Think: what are some zero divisors of our fav examples?

2. Assume R has identity $1 \neq 0$. An element $u \in R$ is called a unit in R if there is some $v \in R$ such that $uv = vu = 1$.

The set of units R^\times is a group (under \cdot) called group of units of R.

Think: what are the groups of units in our fav examples?

3. A commutative ring with identity $1 \neq 0$ is called an integral domain if it has no zero divisors.

Think: which our fav examples are integral domains?
Definition
Let R be a ring.

1. A nonzero element $a \in R$ is called a zero divisor if there is a nonzero element $b \in R$ such that $ab = 0$ or $ba = 0$.

 Think: what are some zero divisors of our fav examples?

2. Assume R has identity $1 \neq 0$. An element $u \in R$ is called a unit in R if there is some $v \in R$ such that $uv = vu = 1$.

Definition
Let R be a ring.

1. A nonzero element $a \in R$ is called a zero divisor if there is a nonzero element $b \in R$ such that $ab = 0$ or $ba = 0$.

 Think: what are some zero divisors of our fav examples?

2. Assume R has identity $1 \neq 0$. An element $u \in R$ is called a unit in R if there is some $v \in R$ such that $uv = vu = 1$.

 The set of units R^\times is a group (under \times) called group of units of R.

Definition
Let R be a ring.

1. A nonzero element $a \in R$ is called a **zero divisor** if there is a nonzero element $b \in R$ such that $ab = 0$ or $ba = 0$.

 Think: what are some zero divisors of our fav examples?

2. Assume R has identity $1 \neq 0$. An element $u \in R$ is called a **unit** in R if there is some $v \in R$ such that $uv = vu = 1$.
 The set of units R^\times is a group (under \times) called **group of units** of R.

 Think: what are the groups of units in our fav examples?
Definition
Let R be a ring.

1. A nonzero element $a \in R$ is called a zero divisor if there is a nonzero element $b \in R$ such that $ab = 0$ or $ba = 0$.

 Think: what are some zero divisors of our fav examples?

2. Assume R has identity $1 \neq 0$. An element $u \in R$ is called a unit in R if there is some $v \in R$ such that $uv = vu = 1$.
 The set of units R^\times is a group (under \times) called group of units of R.

 Think: what are the groups of units in our fav examples?

3. A commutative ring with identity $1 \neq 0$ is called an integral domain if it has no zero divisors.
Definition
Let \(R \) be a ring.

1. A nonzero element \(a \in R \) is called a zero divisor if there is a nonzero element \(b \in R \) such that \(ab = 0 \) or \(ba = 0 \).

 Think: what are some zero divisors of our fav examples?

2. Assume \(R \) has identity \(1 \neq 0 \). An element \(u \in R \) is called a unit in \(R \) if there is some \(v \in R \) such that \(uv = vu = 1 \).

 The set of units \(R^\times \) is a group (under \(\times \)) called group of units of \(R \).

 Think: what are the groups of units in our fav examples?

3. A commutative ring with identity \(1 \neq 0 \) is called an integral domain if it has no zero divisors.

 Think: which our fav examples are integral domains?
Proposition

Let R be a ring and $a, b, c \in R$ such that a is not a zero divisor. If $ab = ac$, then $a = 0$ or $b = c$. ("zero divisors are bad for cancellation")
If particular, if R is an integral domain and $ab = ac$, then $a = 0$ or $b = c$. ("cancellation always works in integral domains")
Proposition

Let R be a ring and $a, b, c \in R$ such that a is not a zero divisor.
If $ab = ac$, then $a = 0$ or $b = c$. (“zero divisors are bad for cancellation”)
If particular, if R is an integral domain and $ab = ac$,
then $a = 0$ or $b = c$. (“cancellation always works in integral domains”)

Corollary

Any finite integral domain is a field.
More on polynomial rings

Definition
Let R be a commutative ring with identity. The formal sum

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

with $n \geq 0$ and each $a_i \in R$ is called a polynomial in x with coefficients a_i in R.
More on polynomial rings

Definition
Let R be a commutative ring with identity. The formal sum

$$a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$$

with $n \geq 0$ and each $a_i \in R$ is called a polynomial in x with coefficients a_i in R.

If $a_n \neq 0$, the polynomial is of degree n, $a_n x^n$ is the leading term and a_n is the leading coefficient. The polynomial is monic if $a_n = 1$.
More on polynomial rings

Definition
Let R be a commutative ring with identity. The formal sum

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

with $n \geq 0$ and each $a_i \in R$ is called a polynomial in x with coefficients a_i in R.
If $a_n \neq 0$, the polynomial is of degree n, $a_n x^n$ is the leading term and a_n is the leading coefficient. The polynomial is monic if $a_n = 1$.
The set of all such polynomials is the ring of polynomials in the x with coefficients in R, denoted $R[x]$. The ring R appears in $R[x]$ as the constant polynomials.
More on polynomial rings

If \(R \) is not an integral domain, then neither is \(R[x] \).
More on polynomial rings

If R is not an integral domain, then neither is $R[x]$.

If $S \leq R$ is a subring, then $S[x] \leq R[x]$ is a subring.
More on polynomial rings

If R is not an integral domain, then neither is $R[x]$.

If $S \leq R$ is a subring, then $S[x] \leq R[x]$ is a subring.

Proposition

Let R be an integral domain and let $p(x), q(x) \in R[x] - \{0\}$. Then

1. $\text{degree } p(x)q(x) = \text{degree } p(x) + \text{degree } q(x)$,
2. the units of $R[x]$ are the units of R,
3. $R[x]$ is an integral domain.
Rational functions

Let R be an integral domain.
The field of fractions of $R[x]$ is

$$\{p(x)/q(x) \mid p(x), q(x) \in R[x], q(x) \neq 0\}.$$
Rational functions

Let R be an integral domain.

The field of fractions of $R[x]$ is

$$\{p(x)/q(x) \mid p(x), q(x) \in R[x], q(x) \neq 0\}.$$

The field of fractions over a field F is written $F(x)$.
Rational functions

Let R be an integral domain.
The field of fractions of $R[x]$ is

$$\{p(x)/q(x) \mid p(x), q(x) \in R[x], q(x) \neq 0\}.$$

The field of fractions over a field F is written $F(x)$.
The ring of fractions of $\mathbb{Z}[x]$ is $\mathbb{Q}(x)$ (which is $\subset \mathbb{Q}((x))$).
Rational functions

Let R be an integral domain.
The field of fractions of $R[x]$ is

$$\{p(x)/q(x) \mid p(x), q(x) \in R[x], q(x) \neq 0\}.$$

The field of fractions over a field F is written $F(x)$.
The ring of fractions of $\mathbb{Z}[x]$ is $\mathbb{Q}(x)$ (which is $\subset \mathbb{Q}((x))$).
The ring of formal power series over R is

$$R[[x]] = \left\{ \sum_{n=0}^{\infty} a_n x^n \mid a_n \in R \right\}.$$

(“Formal” means we need not deal with convergence.)
Rational functions

Let R be an integral domain.
The field of fractions of $R[x]$ is

$$\{p(x)/q(x) \mid p(x), q(x) \in R[x], q(x) \neq 0\}.$$

The field of fractions over a field F is written $F(x)$.
The ring of fractions of $\mathbb{Z}[x]$ is $\mathbb{Q}(x)$ (which is $\subset \mathbb{Q}((x))$).
The ring of formal power series over R is

$$R[[x]] = \left\{ \sum_{n=0}^{\infty} a_n x^n \mid a_n \in R \right\}.$$

("Formal" means we need not deal with convergence.)

If F is a field, the ring of fractions over $F[[x]]$ is the set of (formal) Laurent series

$$F((x)) = \left\{ \sum_{n \geq N} a_n x^n \mid a_n \in F, N \in \mathbb{Z} \right\}.$$