Warm-up

(1) Let \(H = \{1, r^2, r^4\} \subset D_{12} \).
 (a) Check that \(H \trianglelefteq D_{12} \).
 (Check both that it’s closed, and therefore a subgroup, and that
 \(xHx^{-1} = H \) for both generators \(x = r \) and \(s \).)
 (b) List the elements of \(D_{12}/H \).
 (Before you start, how many are there?)
 (c) Show \(D_{12}/H \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \).

(2) Let \(G = \mathbb{Z}_3 \times \mathbb{Z}_3 \) and let \(H = \langle (x, 1) \rangle \), where \(\mathbb{Z}_3 = \langle x \rangle \).
 (a) Briefly, how do we know \(H \trianglelefteq G \)?
 (b) Give a multiplication table for \(G/H \).
 (c) Show that \(G \) is not cyclic, but \(G/H \) is cyclic.

Big theorems from last time

For a subgroup \(H \trianglelefteq G \), define the set
\[
G/H = \{gH \mid g \in G\}.
\]

Proposition

A subgroup \(N \) of \(G \) is normal if and only if it is the kernel of some homomorphism.

Proof. First, we showed kernels were normal, and \(G/\ker \) is a group. Then we showed that \(G/N \) is a group if and only if \(N \trianglelefteq G \), and if \(N \trianglelefteq G \) then
\[
\pi : G \to G/N \quad \text{defined by} \quad g \mapsto gN
\]
is a bijective homomorphism, with kernel \(N \).

Theorem (First isomorphism theorem)

If \(\varphi : G \to H \) is a homomorphism of groups, then
\[
G/\ker(\varphi) \cong \varphi(G).
\]

Punchline: The study of the isomorphism classes of homomorphic images of \(G \) is “the same” as the study of the normal subgroups of \(G \).
Some consequences of coset results

Theorem (Lagrange)
Let G be a finite group. If $H \leq G$, then $|H|$ divides $|G|$, and the number of cosets of H is equal to $|G|/|H|$.

Corollary
Let G be a finite group.

1. If $N \trianglelefteq G$, then $|G/N| = |G|/|N|$.
2. The order of any element $g \in G$ divides $|G|$.
3. If G has prime order, then G is cyclic.
4. If $A, B \leq G$, and $AB = \{ab \mid a \in A, b \in B\}$ then

 $$|AB| = |A||B|/|A \cap B|.$$

Definition
If G is a (possibly infinite) group and $H \leq G$, the number of left cosets of H in G is the **index** of H in G, written $|G : H|$.
Building bigger subgroups
We showed in the exam that if $A, B \leq G$ then
\[A \cap B \leq G \quad \text{but} \quad A \cup B \leq G \text{ iff } A \cup B = A \text{ or } B. \]
The way to build bigger subgroups: Let
\[AB = \{ab \mid a \in A, b \in B\}. \]

Proposition
$AB \leq G$ if and only if $AB = BA$.

Isomorphism theorems, a preview

Let G be a group.
1. If $\varphi : G \rightarrow H$ is a homomorphism of groups, then $\ker(\varphi) \leq G$ and
 \[G/\ker(\varphi) \cong \varphi(G). \]
2. Let $A, B \leq G$ and assume $A \leq N_G(B)$. Then
 \[AB/B \cong A/(A \cap B) \]
 (with appropriate statements about normality).
3. Let $A, B \leq G$ with $A \leq B$. Then $B/A \leq G/A$ and
 \[(G/A)/(B/A) \cong (G/B). \]
4. Every subgroup of G/N comes from projecting a subgroup of G, and the containment, generation, normality, and index information pass through via π the way you want them to.
Second “diamond” isomorphism theorem

We just showed that for $A, B \trianglelefteq G$, and $AB = \{ab \mid a \in A, b \in B\}$, we have

$AB \trianglelefteq G$ if and only if $AB = BA$.

We also showed (while calculating $|AB|$) that for $a, a' \in A$,

$aB = a'B$ if and only if $a(A \cap B) = a'(A \cap B)$.

Theorem

Suppose $A \trianglelefteq N_G(B)$ (we say A normalizes B)

1. Then $AB \trianglelefteq G$.
 (In general, if $B \trianglelefteq G$, then $AB \trianglelefteq G$ for any $A \trianglelefteq G$.)

2. Additionally, $B \trianglelefteq AB$, $A \cap B \trianglelefteq A$ and

 $AB/B \cong A/(A \cap B)$.

\[
\begin{tikzpicture}
 \node (G) at (0,0) {G};
 \node (AB) at (1,-1) {AB};
 \node (A) at (0,-1.5) {A};
 \node (B) at (1,-1.5) {B};
 \node (A_cap_B) at (0.5,-2) {$A \cap B$};
 \draw (G) -- (AB);
 \draw (AB) -- (A);
 \draw (AB) -- (B);
 \draw (G) -- (A_cap_B);
 \draw (A) -- (A_cap_B);
 \draw (B) -- (A_cap_B);
 \draw (G) -- (1,0);
\end{tikzpicture}
\]
Third isomorphism theorem

Theorem

Let $A, B \leq G$ with $A \leq B$. Then

$$A \leq B, \quad B/A \cong G/A,$$

and

$$(G/A)/(B/A) \cong G/B.$$

Example:

$$(\mathbb{Z}/6\mathbb{Z})/(2\mathbb{Z}/6\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}.$$