Exercise 26.
(a) Consider strings of length 10 consisting of 1’s, 2’s, and/or 3’s.
 (i) How many of these are there (with no additional restrictions)?
 \textit{Answer:} \(3^{10}\) (three choices for each digit)
 (ii) How many of these are there that contain exactly three 1’s, two 2’s, and five 3’s?
 \textit{Answer.} We’re counting the anagrams of 1112233333:
 \[
 \frac{10!}{3!2!5!} = \binom{10}{3} \binom{10-3}{2} \binom{10-3-5}{5}.
 \]
(b) How many anagrams are there of MISSISSIPPI?
 \textit{Answer.} There are 4 S’s, 4 I’s, 2 P’s, and 1 M, therefore, there are
 \[
 \frac{11!}{4!4!2!1!} = \binom{11}{4} \binom{11-4}{4} \binom{11-4-4}{2} \binom{11-4-4-2}{1}
 \]
anagrams.
(c) Suppose you’ve got eight varieties of doughnuts to choose from at a doughnuts shop.
 (i) How many ways can you select 6 doughnuts?
 \textit{Answer.} We’re putting 6 indistinguishable objects (our choices) into 8 distinguishable boxes (the varieties of doughnuts):
 \[
 \binom{6 + (8-1)}{6}.
 \]
 (This is a “stars and bars” problem.)
 (ii) How many ways can you select a dozen (12) doughnuts?
 \textit{Answer.} We’re putting 12 indistinguishable objects (our choices) into 8 distinguishable boxes (the varieties of doughnuts):
 \[
 \binom{12 + (8-1)}{12}.
 \]
 (This is a “stars and bars” problem.)
 (iii) How many ways can you select a dozen doughnuts with at least one of each kind? [Hint: if there’s at least one of each kind, then how many choices are you really making?]
 \textit{Answer.} Since 8 choices have already been made, we’re left with putting 4 indistinguishable objects (our choices) into 8 distinguishable boxes (the varieties of doughnuts):
 \[
 \binom{4 + 8 - 1}{4}.
 \]
 (This is still a “stars and bars” problem, but accounting for choices already determined.)
(d) How many different combinations of pennies, nickels, dimes, quarters, and half dollars can a jar contain if it has 20 coins in it?

Answer. We’re putting 200 indistinguishable objects (instances of coins) into 5 distinguishable boxes (the varieties of coins):

\[
\binom{20 + 5 - 1}{20}.
\]

(This is a “stars and bars” problem.)

(e) Counting solutions.

(i) How many solutions are there to the equation \(x_1 + x_2 + x_3 = 10\), where \(x_1, x_2,\) and \(x_3\) are nonnegative integers?

Answer. We’re putting 10 indistinguishable objects (one unit at a time) into 3 distinguishable boxes (the value of the variables):

\[
\binom{10 + 3 - 1}{10}.
\]

(This is a “stars and bars” problem.)

(ii) How many solutions are there to the equation \(x_1 + x_2 + x_3 = 10\), where \(x_1, x_2,\) and \(x_3\) are strictly positive integers?

[Hint: See problem (c)(iii)]

Answer. Since 3 “units” have already been assigned (one to \(x_1\), one to \(x_2\), and one to \(x_3\)), we’re left with putting 7 indistinguishable objects (our units) into 3 distinguishable boxes (the variables):

\[
\binom{7 + 3 - 1}{7}.
\]

(This is still a “stars and bars” problem, but accounting for choices already determined.)

(iii) How many solutions are there to the equation \(x_1 + x_2 + x_3 \leq 10\), where \(x_1, x_2,\) and \(x_3\) are nonnegative integers? [Hint: Use an extra variable \(x_4\) such that \(x_1 + x_2 + x_3 + x_4 = 10\)]

Answer. The nonnegative integer solutions to \(x_1 + x_2 + x_3 \leq 10\) is the same as the nonnegative integer solutions to \(x_1 + x_2 + x_3 + x_4 = 10\) (where \(x_4 = 10 - (x_1 + x_2 + x_3)\)). So, similarly to the previous part, there are

\[
\binom{10 + 4 - 1}{10}
\]

solutions.

(This is still a “stars and bars” problem.)
Exercise 27.
(a) List the partitions of 6, both as box diagrams and as sequences.

Answer.

(b) How many ways are there to distribute 6 identical cookies into 6 identical lunch boxes, possibly leaving some empty?

Answer. This is the number of partitions of 6 with at most 6 parts, of which there are 12 (see part (a)).

(c) How many ways are there to distribute 6 identical snack bars into 4 identical lunch boxes, possibly leaving some empty?

Answer. This is the number of partitions of 6 with at most 4 parts, of which there are 9 (see part (a)).

(d) How many ways are there to distribute 4 identical apples into 6 identical lunch boxes, possibly leaving some empty?

Answer. This is the number of partitions of 4 with at most 6 parts, which is the same as the number of partitions with at most 4 parts, of which there are 5:
Exercise 28.
(a) Basic counting:

(i) How many ways are there to distribute 5 distinguishable objects into 3 distinguishable boxes, possibly leaving some empty?

\[\text{Answer: } 3^5 \]

(ii) How many ways are there to distribute 5 indistinguishable objects into 3 distinguishable boxes, possibly leaving some empty?

\[\binom{5+3-1}{3} \]

(iii) How many ways are there to distribute 5 distinguishable objects into 3 indistinguishable boxes, possibly leaving some empty?

\[S(5, 3) + S(5, 2) + S(5, 1) \]

Answer. There are

\[S(n, j) = \frac{1}{j!} \sum_{\ell=0}^{j-1} (-1)^\ell \binom{j}{\ell} (j - \ell)^n; \]

or you can count directly by cases as follows.

\[S(5, 1) = 1: \text{ There is one way to put all 5 things into one box.} \]

\[S(5, 2) = 5 + \binom{5}{2} = 15: \text{ If we split 5 things into two boxes then that split either looks like } \{a, b, c, d\}, \{e\} \text{ or } \{a, b, c\}, \{d, e\}. \]

In the first case, there are 5 ways to do this (5 ways to choose e); in the second case, there are \(\binom{5}{2} = 10 \) ways to choose \(d \) and \(e \).

\[S(5, 3) = \binom{5}{2} + \frac{1}{2} \binom{5}{2} \binom{3}{2} = 25: \text{ If we split 5 things into three boxes then that split either looks like } \{a, b, c\}, \{d\}, \{e\} \text{ or } \{a, b\}, \{c, d\}, \{e\}. \]

In the first case, there are \(\binom{5}{2} \) to choose \(d \) and \(e \) (the order doesn’t matter since the boxes are indistinguishable—all we care about is that \(d \) and \(e \) get their own box, and the rest have to share a box). In the second case, there are \(\frac{1}{2} \binom{5}{2} \binom{3}{2} \) ways—pick \(a \) and \(b \), then pick \(c \) and \(d \), and then divide by the permutations of the first two sets (again since I can’t tell the difference between the boxes).

So

\[S(5, 3) + S(5, 2) + S(5, 1) = 25 + 15 + 1. \]

(iv) How many ways are there to distribute 5 indistinguishable objects into 3 indistinguishable boxes, possibly leaving some empty?

Answer. The ways to do this are in bijection with integer partitions of 5 with at most 3 parts, so there are

\[p_3(5) = \left| \{\{\cdot\cdot\cdot, \cdot\cdot, \cdot\cdot\}, \{\cdot\cdot, \cdot\cdot, \cdot\cdot\}, \{\cdot\cdot, \cdot\cdot, \cdot\cdot\}\} \right| = 5 \]

ways.
(v) How many ways are there to distribute 6 distinguishable objects into 4 indistinguishable boxes, possibly leaving some empty?

Answer:

\[S(6, 4) + S(6, 3) + S(6, 2) + S(6, 1) \]

(vi) How many ways are there to distribute 6 distinguishable objects into 4 indistinguishable boxes so that each of the boxes contains at least one object? Answer: \(S(6, 4) \)

(b) How many ways are there to pack 8 identical DVDs into 5 indistinguishable boxes? How many ways to do this task so that each box contains at least one DVD?

Answer: In general,

\[S(8, 5) + S(8, 4) + S(8, 3) + S(8, 2) + S(8, 1); \]

but only \(S(8, 5) \) if each box contains at least one DVD.

(c) How many ways are there to distribute 5 balls into 7 boxes if

(i) both the balls and boxes are labeled? \(\text{Answer: } 7^5 \)

(ii) the balls are labeled, but the boxes are unlabeled?

Answer. There are

\[S(5, 7) + S(5, 6) + S(5, 5) + S(5, 4) + S(5, 3) + S(5, 2) + S(5, 1) = 0 + 0 + 1 + S(5, 4) + S(5, 3) + S(5, 2) + S(5, 1) \]

ways. Note that \(S(5, 7) = S(5, 6) = 0 \) since there is no way to leave no box empty when there are more boxes than balls.

(iii) the balls are unlabeled, but the boxes are labeled? \(\text{Answer: } \binom{5+7-1}{5} \)

(iv) both the balls and boxes are unlabeled?

Answer.

\[p_7(5) = \left\{ \begin{array}{c}
\text{boxes}
\end{array} \right\} \]

(d) Repeat parts (i)–(iv) of part (c), adding the condition that each bucket can have at most one ball in it.

(i) both the balls and boxes are labeled:

Answer. There are \(7 \times 6 \times 5 \times 4 \times 3 \) ways (pick 5 boxes from 7 in order without replacement).
(ii) the balls are labeled, but the boxes are unlabeled:

\textit{Answer}. Each ball has to go into a separate box, but we can’t tell the difference between the buckets. So there’s one way.

\hspace{1cm} ..

(iii) the balls are unlabeled, but the boxes are labeled:

\textit{Answer}. Each ball has to go into a separate box, and we can’t tell the difference between the balls, but we can tell which buckets have been filled. So there are \(\binom{5}{2} \) ways.

\hspace{1cm} ..

(iv) both the balls and boxes are unlabeled:

\textit{Answer}. Each ball has to go into a separate box, and we can’t tell the difference between the balls or the buckets. So there’s one way.

\hspace{1cm} ..

\textbf{Exercise 29.} Draw a tree-diagram that tells you how many ways to form the following results, and count the possible outcomes.

(a) Strings of 1’s and 0’s of length-four with three consecutive 0’s.

\textit{Answer}.

\hspace{1cm} ..
(b) Subsets of the set \(\{3, 7, 9, 11, 24\}\) whose elements sum to less than 28.

Answer.

Exercise 30.

(a) Permutations.

(i) Find a recurrence relation and initial conditions for the number of permutations of a set with \(n\) elements.

Answer. For each permutation of \(n - 1\), insert an \(n\). There are \(n\) ways to do this (insert at the beginning, after the first term, after the second term, \ldots, after the \(n - 1\) term):

\[a_n = na_{n-1}. \]

This needs one initial condition. There is one permutation of one thing, so

\[a_1 = 1. \]

(ii) Check your recurrence relation by iteratively calculating the first 5 terms of your sequence, and using the known closed formula for counting permutations.

Answer. We know that there are \(n!\) permutations of \(n\) elements.

\[
\begin{align*}
a_2 &= 2a_1 = 2 \times 1 = 2! \quad \checkmark \\
a_3 &= 3a_2 = 3 \times 2 \times 1 = 3! \quad \checkmark \\
a_4 &= 4a_3 = 4 \times 3 \times 2 \times 1 = 4! \quad \checkmark \\
a_5 &= 5a_4 = 5 \times 4 \times 3 \times 2 \times 1 = 5! \quad \checkmark
\end{align*}
\]
(b) Bit strings.

(i) Find a recurrence relation and initial conditions for the number of bit strings of length \(n \) that contain a pair of consecutive 0s.

Answer. For every good bit string (a bit string containing at least one pair of consecutive 0's) or length \(n \), removing the last bit leave either a good or a bad bit string of length \(n - 1 \). For those that leave a good bit string, either the last digit is a 1 or a 0, so there are

\[
a_{n-1} \times 2
\]

of these.

For those that leave a bad bit string, this means that the \(n - 1 \) bit has to be a 0 and the \(n - 2 \) bit has to be a 1. The rest of the bits are free. Thus there are

\[
(\text{total } n - 3 \text{ strings}) - (\text{number of good } n - 3 \text{ strings}) = 2^{n-3} - a_{n-3}
\]

of these.

So

\[
a_n = 2a_{n-1} + 2^{n-3} - a_{n-3}.
\]

This requires three initial conditions. There are no good bit strings of length 1; there is 1 good string of length 2 (00), and there are three good strings of length 3 (000, 100, and 001). So

\[
a_1 = 0, \quad a_2 = 1, \quad a_3 = 3.
\]

(ii) Check your answer for \(n = 4 \) by iteratively using your recurrence relation, and then by listing the possibilities.

Answer. Decision tree:

![Decision Tree](image)

This shows that there are 8 good 4-strings. Alternatively,

\[
a_4 = 2a_3 + 2^1 - a_1 = 2 \times 3 + 2 - 0 = 8 \quad \checkmark
\]
(c) Climbing stairs.

(i) Find a recurrence relation and initial conditions for the number of ways to climb \(n \) stairs if the person climbing the stairs can take one stair or two stairs at a time.

Answer. Consider the last step taken. This is either two stairs or one. If it’s two, there are \(a_{n-2} \) ways to lead up to this; if it’s one, there are \(a_{n-1} \) ways to lead up to this. So

\[
a_n = a_{n-1} + a_{n-2}.
\]

If there’s only one stair, there’s one way to climb it. If there are two stairs, the person can take them one at a time, or both at once. So

\[
a_1 = 1 \quad \text{and} \quad a_2 = 2.
\]

(ii) Check your answer for \(n = 4 \) by iteratively using your recurrence relation, and by counting the number of these sequences by hand using a decision tree.

Answer.

\[
\begin{align*}
2 & \quad 2 \\
1 & \quad 1 & \quad 1 \\
1 & \quad 1 & \quad 1 \\
\end{align*}
\]

This shows that there are 5 ways to climb 4 stairs. Alternatively,

\[
\begin{align*}
a_3 &= a_2 + a_1 = 2 + 1 = 3 \\
a_4 &= a_3 + a_2 = 3 + 1 = 5
\end{align*}
\]

(iii) Calculate the number of ways to climb 8 stairs in this way.

Answer. Continuing from before:

\[
\begin{align*}
a_5 &= a_4 + a_3 = 5 + 3 = 8 \\
a_6 &= a_5 = 8 + 5 = 13 \\
a_7 &= a_6 + a_5 = 13 + 8 = 21 \\
a_8 &= a_7 + a_6 = 21 + 13 = 34.
\end{align*}
\]
(d) Tiling boards.

(i) Find a recurrence relation and initial conditions for the number of ways to completely cover a $2 \times n$ checkerboard with 1×2 dominoes. For example, if $n = 3$, one solution is

2×3 checkerboard: covered with 3 dominoes: shorthand for same solution:

![Image of checkerboard and dominoes]

[Hint: Consider separately the coverings where the position in the top right corner of the checkerboard is covered by a domino positioned horizontally and where it is covered by a domino positioned vertically.]

Answer. If the top right corner is covered by a vertical domino, then the remainder of the board is a tiling of a $2 \times (n - 1)$ board, of which there are a_{n-1} ways. If the top right corner is covered by a horizontal domino, then the bottom right corner is tiled by a horizontal domino. The rest of the board is a $2 \times (n - 2)$ board, of which there are a_{n-2} ways to do this. So

$$a_n = a_{n-1} + a_{n-2}.$$

There’s one way to tile a 2×1 board, and two ways to tile a 2×2 board, so

$$a_1 = 1 \quad \text{and} \quad a_2 = 2.$$

(ii) Check your answer for $n = 4$ by iteratively using your recurrence relation, and by counting the number of these sequences by hand.

Answer. The 2×4 tilings:

![Image of 2x4 tilings]

Alternatively,

$$a_3 = 2 + 1 = 3, \quad \text{so} \quad a_4 = 3 + 2 = 5. \quad \checkmark$$

(iii) How many ways are there to completely cover a 2×6 checkerboard with 1×2 dominoes?

Answer. Continuing from above,

$$a_5 = 5 + 3 = 8, \quad \text{so} \quad a_6 = 8 + 5 = 13.$$
(e) Increasing sequences

(i) Find a recurrence relation for the number of strictly increasing sequences of positive integers that have 1 as their first term and \(n \) as their last term, where \(n \) is a positive integer. That is, sequences \(a_1, a_2, \ldots, a_k \), where \(a_1 = 1, a_k = n \), and \(a_j < a_{j+1} \) for \(j = 1, 2, \ldots, k - 1 \).

Answer. Let \(H_n \) be the number of these sequences. Each sequence ending in \(n \) either has \(n-1 \) in it or it doesn’t. By removing the last term from a sequence that has \(n-1 \) in it, you’re left with an increasing sequence starting at 1 and ending at \(n-1 \), of which there are \(H_{n-1} \). If the sequence doesn’t have an \(n-1 \) in it, then replacing \(n \) with \(n-1 \) leaves an increasing sequence starting at 1 and ending at \(n-1 \), of which there are \(H_{n-1} \). So

\[
H_n = 2H_{n-1}.
\]

There is one sequence starting at 1 and ending at 2, so \(H_2 = 1 \) (it doesn’t make sense to start with \(H_2 \)).

(ii) Check your answer for \(n = 4 \) by iteratively using your recurrence relation, and by counting the number of these sequences by hand using a decision tree.

Answer.

![Decision Tree](image)

This says there are four such sequences. Alternatively,

\[
a_3 = 2a_2 = 2, \quad \text{and so} \quad a_4 = 2a_3 = 2 \times 2 = 4 \quad \checkmark.
\]

(iii) Explain why there are infinitely many such sequences if we replace “strictly increasing” with “weakly increasing” in part (i), i.e. turn “<” into “\(\leq \)”.

Answer. This will include sequences like \(1, 1, \ldots, 1, n \) arbitrarily many 1’s.