Mathematical Induction

Sorites paradox: If 1,000,000 grains of sand forms a “heap of sand”, and removing one grain from a heap leaves it a heap, then a single grain of sand (or even no grains) still forms a heap.
Mathematical induction

Say we have a statement, $P(n)$, that has the natural numbers $n \in \mathbb{Z}_{\geq 0}$ as an input.
Mathematical induction

Say we have a statement, $P(n)$, that has the natural numbers $n \in \mathbb{Z}_{\geq 0}$ as an input.

For example, say you have an infinite row of dominoes, labeled $0, 1, 2, \ldots$:

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
\end{array}
\]
Mathematical induction

Say we have a statement, $P(n)$, that has the natural numbers $n \in \mathbb{Z}_{\geq 0}$ as an input.

For example, say you have an infinite row of dominoes, labeled 0, 1, 2, ...:

Let $P(n)$ be the statement "I can knock the nth domino over".
Mathematical induction

Let $P(n)$ be the statement

“I can knock the nth domino over”.

If you can start by bumping the 0th domino over, that’s showing that $P(0)$ is true:
Mathematical induction

Let $P(n)$ be the statement

“The I can knock the nth domino over”.

Then, if you can show that the 0th domino knocking into the 1st domino with then knock #1 over, you’ll show that $P(1)$ is true:
Mathematical induction

Let $P(n)$ be the statement “I can knock the nth domino over”.

Then, if you can show that the 0th domino knocking into the 1st domino with then knock #1 over, you’ll show that $P(1)$ is true:

In math: You can show that $P(1)$ is true by proving (a) $P(0)$ is true, and (b) that $P(0)$ implies $P(1)$.
Mathematical induction

Let $P(n)$ be the statement

"I can knock the nth domino over".

Then, if you can show that the 0th domino knocking into the 1st domino with then knock #1 over, you'll show that $P(1)$ is true:

In math: You can show that $P(1)$ is true by proving

(a) $P(0)$ is true, and (b) that $P(0)$ implies $P(1)$.

Idea: $P(1)$ will imply $P(2)$, which will imply $P(3)$, and so on...
Mathematical induction

To show that $P(k)$ holds in general, you show that

(a) $P(0)$ is true, and then

(b) for any n, if $P(n)$ is true, then that implies $P(n + 1)$ is also true. (If the nth domino falls, then so will the $(n + 1)$th)
Mathematical induction

To show that $P(k)$ holds in general, you show that

(a) $P(0)$ is true, and then

(b) for any n, if $P(n)$ is true, then that implies $P(n + 1)$ is also true. (If the nth domino falls, then so will the $(n + 1)$th)

Then by letting the dominos fall one after the other, eventually each domino will fall (no particular domino will be left standing, given enough time):
Mathematical induction

Theorem: for any $k \in \mathbb{Z}_{\geq 0}$, I can knock down the kth domino.
Theorem: for any $k \in \mathbb{Z}_{\geq 0}$, I can knock down the kth domino.

Proof by induction:
First, I can knock down the 0th domino.
Mathematical induction

Theorem: for any $k \in \mathbb{Z}_{\geq 0}$, I can knock down the kth domino.

Proof by induction:
First, I can knock down the 0th domino.

Now, for some $n \in \mathbb{Z}_{\geq 0}$, suppose I can knock down the nth domino.
Theorem: for any \(k \in \mathbb{Z}_{\geq 0} \), I can knock down the \(k \)th domino.

Proof by induction:
First, I can knock down the 0th domino.

Now, for some \(n \in \mathbb{Z}_{\geq 0} \), suppose I can knock down the \(n \)th domino.

The \(n \)th domino will bump into the \((n + 1)\)th domino, which will knock it over. So that implies I can knock down the \((n + 1)\)th domino.
Theorem: for any $k \in \mathbb{Z}_{\geq 0}$, I can knock down the kth domino.

Poof by induction:
First, I can knock down the 0th domino.

Now, for some $n \in \mathbb{Z}_{\geq 0}$, suppose I can knock down the nth domino.

The nth domino will bump into the $(n + 1)$th domino, which will knock it over. So that implies I can knock down the $(n + 1)$th domino.

Thus, by induction, I can knock down the kth domino for any $k \in \mathbb{Z}_{\geq 0}$. □
Theorem: for any $k \in \mathbb{Z}_{\geq 0}$, I can knock down the kth domino.

Proof by induction:
First, I can knock down the 0th domino. ("Base case")

Now, for some $n \in \mathbb{Z}_{\geq 0}$, suppose I can knock down the nth domino.

The nth domino will bump into the $(n + 1)$th domino, which will knock it over. So that implies I can knock down the $(n + 1)$th domino.

Thus, by induction, I can knock down the kth domino for any $k \in \mathbb{Z}_{\geq 0}$. □
Mathematical induction

Theorem: for any $k \in \mathbb{Z}_{\geq 0}$, I can knock down the kth domino.

Proof by induction:
First, I can knock down the 0th domino. (**“Base case”**)

Now, for some $n \in \mathbb{Z}_{\geq 0}$, suppose I can knock down the nth domino. (**“Induction hypothesis”**)

The nth domino will bump into the $(n + 1)$th domino, which will knock it over. So that implies I can knock down the $(n + 1)$th domino.

Thus, by induction, I can knock down the kth domino for any $k \in \mathbb{Z}_{\geq 0}$. □
Mathematical induction

Theorem: for any $k \in \mathbb{Z}_{\geq 0}$, I can knock down the kth domino.

Proof by induction:
First, I can knock down the 0th domino. ("Base case")

Now, for some $n \in \mathbb{Z}_{\geq 0}$, suppose I can knock down the nth domino. ("Induction hypothesis")

The nth domino will bump into the $(n + 1)$th domino, which will knock it over. So that implies I can knock down the $(n + 1)$th domino. ("Induction step")

Thus, by induction, I can knock down the kth domino for any $k \in \mathbb{Z}_{\geq 0}$. □
Mathematical induction

Theorem: for any \(k \in \mathbb{Z}_{\geq 0} \), I can knock down the \(k \)th domino.

Proof by induction:
First, I can knock down the 0th domino. \(\text{ (“Base case”) } \)

Now, for some \(n \in \mathbb{Z}_{\geq 0} \), suppose I can knock down the \(n \)th domino.
\(\text{ (“Induction hypothesis”) } \)

The \(n \)th domino will bump into the \((n + 1) \)th domino, which will knock it over. So that implies I can knock down the \((n + 1) \)th domino.
\(\text{ (“Induction step”) } \)

Thus, by induction, I can knock down the \(k \)th domino for any \(k \in \mathbb{Z}_{\geq 0} \). \(\square \) \(\text{ (“Conclusion”) } \)
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
Math example: Show \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) by induction.

Proof by induction (first draft).

Define \(P(n) \): \(P(n) \) is “\(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).”

Base case: The lowest case is \(P(1) \), so we check that:
Math example: Show \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) by induction.

Proof by induction (first draft).

Define \(P(n) \): \(P(n) \) is “\(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)”.

Base case: The lowest case is \(P(1) \), so we check that:

\[
\sum_{i=1}^{1} i = \frac{1 * 2}{2}. \quad \checkmark
\]
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$”.

Base case: The lowest case is $P(1)$, so we check that:

$$\sum_{i=1}^{1} i = \frac{1 \times 2}{2}.$$

✓

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$P(n + 1)$: $\sum_{i=1}^{n+1} i = \frac{(n + 1)((n + 1) + 1)}{2}$
Math example: Show \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) by induction.

Proof by induction (first draft).

Define \(P(n) \): \(P(n) \) is “\(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)”.

Base case: The lowest case is \(P(1) \), so we check that:

\[
\sum_{i=1}^{1} i = \frac{1 \times 2}{2}. \quad \checkmark
\]

Goal: Assume \(P(n) \) and show \(P(n+1) \), which is

\[
P(n+1) : \quad \sum_{i=1}^{n+1} i = \frac{(n + 1)((n + 1) + 1)}{2} = \frac{(n + 1)(n + 2)}{2}.
\]
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$”.

Base case: The lowest case is $P(1)$, so we check that:

$$\sum_{i=1}^{1} i = \frac{1 * 2}{2} = \frac{2}{2} = 1.$$

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1) : \quad \sum_{i=1}^{n+1} i = \frac{(n + 1)((n + 1) + 1)}{2} = \frac{(n + 1)(n + 2)}{2}.$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 1$ and assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ (this is the Inductive Hypothesis, IH).
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is "$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$" ...)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 1$ and assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ (this is the Inductive Hypothesis, IH).
Math example: Show \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) by induction.

Proof by induction (first draft). (Continued from previous slide, where \(P(n) \) is "\(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \" ...)

Inductive step: (Assume \(P(n) \) and show \(P(n+1) \))

Fix \(n \geq 1 \) and assume \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) (this is the Inductive Hypothesis, IH). Then

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)
\]

\[
= \frac{n(n+1)}{2} + (n+1)
\]

\[
= \frac{n(n+1)+2(n+1)}{2}
\]

\[
= \frac{(n+1)(n+2)}{2}
\]

\[
= \frac{(n+1)(n+2)}{2}
\]

Conclusion: So since \(P(1) \) is true, and \(P(n) \) implies \(P(n+1) \), we have \(P(k) \) is true for all \(k \geq 1 \), 2, 3, ...
Math example: Show \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) by induction.

Proof by induction (first draft). (Continued from previous slide, where \(P(n) \) is \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) . . .

Inductive step: (Assume \(P(n) \) and show \(P(n+1) \))

Fix \(n \geq 1 \) and assume \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) (this is the Inductive Hypothesis, IH). Then

\[
\sum_{i=1}^{n+1} i = 1 + 2 + \cdots + n + (n + 1)
\]
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$” …)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 1$ and assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ (this is the Inductive Hypothesis, IH). Then

\[
\sum_{i=1}^{n+1} i = 1 + 2 + \cdots + n + (n + 1) \\
\sum_{i=1}^{n+1} i = \underbrace{\sum_{i=1}^{n} i + (n + 1)}
\]
Math example: Show \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) by induction.

Proof by induction (first draft). (Continued from previous slide, where \(P(n) \) is “\(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)”…)

Inductive step: (Assume \(P(n) \) and show \(P(n + 1) \))

Fix \(n \geq 1 \) and assume \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) (this is the Inductive Hypothesis, IH). Then

\[
\sum_{i=1}^{n+1} i = 1 + 2 + \cdots + n + (n + 1) = \sum_{i=1}^{n} i + (n + 1) = \frac{n(n+1)}{2} + (n + 1) \quad \text{(by the Inductive Hypothesis)}
\]
Math example: Show \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) by induction.

Proof by induction (first draft). (Continued from previous slide, where \(P(n) \) is "\(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \"")

Inductive step: (Assume \(P(n) \) and show \(P(n + 1) \))

Fix \(n \geq 1 \) and assume \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) (this is the **Inductive Hypothesis, IH**). Then

\[
\begin{align*}
\sum_{i=1}^{n+1} i &= 1 + 2 + \cdots + n + (n + 1) \\
&= \frac{n(n+1)}{2} + (n + 1) \\
&= \frac{n^2 + n + 2n + 2}{2} \\
&= \frac{n^2 + 3n + 2}{2}
\end{align*}
\]

(by the Inductive Hypothesis)
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is "$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$"…)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 1$ and assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ (this is the Inductive Hypothesis, IH). Then

\[
\sum_{i=1}^{n+1} i = \underbrace{1 + 2 + \cdots + n}_{\sum_{i=1}^{n} i} + (n + 1)
\]

\[
\frac{n(n+1)}{2} + (n + 1) \quad \text{(by the Inductive Hypothesis)}
\]

\[
= \frac{n^2 + n + 2n + 2}{2} = \frac{n^2 + 3n + 2}{2}
\]
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is "$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$" . . .)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 1$ and assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ (this is the Inductive Hypothesis, IH). Then

$$
\begin{align*}
\sum_{i=1}^{n+1} i &= 1 + 2 + \cdots + n + (n + 1) \\
&= \frac{n(n+1)}{2} + (n + 1) \quad \text{(by the Inductive Hypothesis)} \\
&= \frac{n^2 + n + 2n + 2}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n + 1)(n + 2)}{2}.
\end{align*}
$$

✓
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$” …)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 1$ and assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ (this is the Inductive Hypothesis, IH). Then

$$\begin{align*}
\sum_{i=1}^{n+1} i &= 1 + 2 + \cdots + n + (n + 1) \\
&= \sum_{i=1}^{n} i + (n + 1) \\
&\overset{\text{IH}}{=} \frac{n(n+1)}{2} + (n + 1) \quad \text{(by the Inductive Hypothesis)} \\
&= \frac{n^2 + n + 2n + 2}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n + 1)(n + 2)}{2}.
\end{align*}$$

✓

Conclusion: So since $P(1)$ is true, and $P(n)$ implies $P(n + 1)$, we have $P(k)$ is true for all $k = 1, 2, 3, \ldots$. □
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (final draft).
Math example: Show $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ by induction.

Proof by induction (final draft). For $n = 1$, we have

$$\sum_{i=1}^{1} i = 1 = \frac{1 \times 2}{2},$$

as desired. Now fix $n \geq 1$ and assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ (for that value of n). Then

$$\sum_{i=1}^{n+1} i = \frac{n(n+1)}{2} + (n + 1) \quad \text{(by the inductive hypothesis)}$$

$$= \frac{n^2 + n + 2n + 2}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n + 1)(n + 2)}{2}. $$

Thus, the claim holds for all $n \geq 1$ by induction. □
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n < 2^n$.”
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n < 2^n$”.

Base case: The least value of n is 0, so the base case is $P(0)$:
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n < 2^n$”.

Base case: The least value of n is 0, so the base case is $P(0)$:

$$0 < 1 = 2^0.$$ ✓
Example: Show \(n < 2^n \) for all \(n \in \mathbb{Z}_{\geq 0} \) by induction.

Proof by induction (first draft).

Define \(P(n) \): \(P(n) \) is "\(n < 2^n \)".

Base case: The least value of \(n \) is 0, so the base case is \(P(0) \):
\[
0 < 1 = 2^0. \quad \checkmark
\]

Goal: Assume \(P(n) \) and show \(P(n + 1) \), which is
\[
P(n + 1) : \quad n + 1 < 2^{n+1}.
\]
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n < 2^n$”.

Base case: The least value of n is 0, so the base case is $P(0)$:

$$0 < 1 = 2^0. \quad \checkmark$$

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1) : \quad n + 1 < 2^{n+1}.\quad$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 0$ and assume $n < 2^n$ (this is the IH).
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n < 2^n$”.

Base case: The least value of n is 0, so the base case is $P(0)$:
$$0 < 1 = 2^0.$$ ✓

Goal: Assume $P(n)$ and show $P(n + 1)$, which is
$$P(n + 1): \quad n + 1 < 2^{n+1}.$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)
Fix $n \geq 0$ and assume $n < 2^n$ (this is the IH). Then since $n \geq 0$,

$$n + 1 < 2^n + 1$$

\[\text{IH} \]
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n < 2^n$”.

Base case: The least value of n is 0, so the base case is $P(0)$:

$$0 < 1 = 2^0.$$✓

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1): \quad n + 1 < 2^{n+1}.$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 0$ and assume $n < 2^n$ (this is the IH). Then since $n \geq 0$,

$$n + 1 < 2^n + 1 \leq 2^n + 2^n$$
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n < 2^n$”.

Base case: The least value of n is 0, so the base case is $P(0)$:

$$0 < 1 = 2^0. \quad \checkmark$$

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1): \quad n + 1 < 2^{n+1}.$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 0$ and assume $n < 2^n$ (this is the IH). Then since $n \geq 0$,

$$n + 1 \leq 2^n + 1 < 2^n + 2^n = 2(2^n)$$
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n < 2^n$”.

Base case: The least value of n is 0, so the base case is $P(0)$:

$$0 < 1 = 2^0.$$ ✓

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1): \quad n + 1 < 2^{n+1}.$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 0$ and assume $n < 2^n$ (this is the IH). Then since $n \geq 0$,

$$n + 1 < 2^n + 1 \leq 2^n + 2^n = 2(2^n) = 2^{n+1}. \quad \checkmark$$
Example: Show \(n < 2^n \) for all \(n \in \mathbb{Z}_{\geq 0} \) by induction.

Proof by induction (first draft).

Define \(P(n) \): \(P(n) \) is “\(n < 2^n \)”.

Base case: The least value of \(n \) is 0, so the base case is \(P(0) \):
\[
0 < 1 = 2^0. \quad \checkmark
\]

Goal: Assume \(P(n) \) and show \(P(n + 1) \), which is
\[
P(n + 1) : \quad n + 1 < 2^{n+1}.
\]

Inductive step: (Assume \(P(n) \) and show \(P(n + 1) \))
Fix \(n \geq 0 \) and assume \(n < 2^n \) (this is the IH). Then since \(n \geq 0 \),
\[
\text{IH}\quad n + 1 < 2^n + 1 \leq 2^n + 2^n = 2(2^n) = 2^{n+1}. \quad \checkmark
\]

Conclusion: So since \(P(0) \) is true, and \(P(n) \) implies \(P(n + 1) \),
we have \(P(k) \) is true for all \(k \in \mathbb{Z}_{\geq 0} \). \(\square \)
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (final draft).
Example: Show $n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (final draft).
For $n = 0$, we have

$$0 < 1 = 2^0,$$

as desired. Now, fix $n \geq 0$ and assume $n < 2^n$ (for that n). Then since $n \geq 0$, we have

$$n + 1 < 2^n + 1 \leq 2^n + 2^n = 2(2^n) = 2^{n+1}.$$

Thus, the claim holds for all $n \geq 0$ by induction. \qed
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n^2 + n = 2k$ for some integer k”.
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n^2 + n = 2k$ for some integer k”.

Base case: (Show $P(0)$) We have

$$0^2 + 0 = 0 = 2 \cdot 0.$$
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “$n^2 + n = 2k$ for some integer k”.

Base case: (Show $P(0)$) We have

$$0^2 + 0 = 0 = 2 \times 0.$$ ✓

Goal: Assume $P(n)$ and show $P(n+1)$, which is

$$P(n+1): (n+1)^2 + (n+1) = 2\ell \text{ for some } \ell \in \mathbb{Z}$$
Example: Show \(n^2 + n \) is even for all \(n \in \mathbb{Z}_{\geq 0} \) by induction.

Proof by induction (first draft).

Define \(P(n) \): \(P(n) \) is \("n^2 + n = 2k \) for some integer \(k" \).

Base case: (Show \(P(0) \)) We have

\[
0^2 + 0 = 0 = 2 \times 0. \quad \checkmark
\]

Goal: Assume \(P(n) \) and show \(P(n + 1) \), which is

\[
P(n + 1) : \quad (n + 1)^2 + (n + 1) = 2\ell \text{ for some } \ell \in \mathbb{Z}
\]

(Careful!! Don’t use the same letter for the IH and \(P(n + 1) \) since it’s any integer, not something we get from a formula!!)
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “$n^2 + n = 2k$ for some integer k”.)

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1) : \quad (n + 1)^2 + (n + 1) = 2\ell \text{ for some } \ell \in \mathbb{Z}$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 0$ and assume $n^2 + n = 2k$ for some $k \in \mathbb{Z}$ (this is the IH).
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “$n^2 + n = 2k$ for some integer k”.)

Goal: Assume $P(n)$ and show $P(n+1)$, which is

$P(n+1): \quad (n+1)^2 + (n+1) = 2\ell$ for some $\ell \in \mathbb{Z}$

Inductive step: (Assume $P(n)$ and show $P(n+1)$)
Fix $n \geq 0$ and assume $n^2 + n = 2k$ for some $k \in \mathbb{Z}$ (this is the IH). Then

$$(n + 1)^2 + (n + 1) = n^2 + 2n + 1 + n + 1$$
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “$n^2 + n = 2k$ for some integer k”.)

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

\[P(n + 1): \quad (n + 1)^2 + (n + 1) = 2\ell \text{ for some } \ell \in \mathbb{Z} \]

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 0$ and assume $n^2 + n = 2k$ for some $k \in \mathbb{Z}$ (this is the IH). Then

\[
(n + 1)^2 + (n + 1) = n^2 + 2n + 1 + n + 1 = (n^2 + n) + (2n + 2)
\]
Example: Show \(n^2 + n \) is even for all \(n \in \mathbb{Z}_{\geq 0} \) by induction.

Proof by induction (first draft). (Continued from previous slide, where \(P(n) \) is "\(n^2 + n = 2k \) for some integer \(k \)."

Goal: Assume \(P(n) \) and show \(P(n+1) \), which is

\[
P(n+1) : \quad (n+1)^2 + (n+1) = 2\ell \text{ for some } \ell \in \mathbb{Z}
\]

Inductive step: (Assume \(P(n) \) and show \(P(n+1) \))

Fix \(n \geq 0 \) and assume \(n^2 + n = 2k \) for some \(k \in \mathbb{Z} \) (this is the IH). Then

\[
(n + 1)^2 + (n + 1) = n^2 + 2n + 1 + n + 1 = (n^2 + n) + (2n + 2)
\]

even by IH
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “$n^2 + n = 2k$ for some integer k”.)

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1) : (n + 1)^2 + (n + 1) = 2\ell \text{ for some } \ell \in \mathbb{Z}$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 0$ and assume $n^2 + n = 2k$ for some $k \in \mathbb{Z}$ (this is the IH). Then

$$(n + 1)^2 + (n + 1) = n^2 + 2n + 1 + n + 1 = \underbrace{(n^2 + n) + (2n + 2)}_{\text{even by IH}}$$

$$\equiv 2k + 2(n + 1)$$
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “$n^2 + n = 2k$ for some integer k”.)

Goal: Assume $P(n)$ and show $P(n+1)$, which is

$$P(n+1) : (n + 1)^2 + (n + 1) = 2\ell \text{ for some } \ell \in \mathbb{Z}$$

Inductive step: (Assume $P(n)$ and show $P(n+1)$)
Fix $n \geq 0$ and assume $n^2 + n = 2k$ for some $k \in \mathbb{Z}$ (this is the IH). Then

$$(n + 1)^2 + (n + 1) = n^2 + 2n + 1 + n + 1 = \left(n^2 + n \right) + (2n + 2)$$

\[\text{even by IH} \]

\[\overset{\text{IH}}{=} 2k + 2(n + 1) = 2(k + n + 1) \]
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “$n^2 + n = 2k$ for some integer k”.)

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1) : \quad (n + 1)^2 + (n + 1) = 2\ell \text{ for some } \ell \in \mathbb{Z}$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 0$ and assume $n^2 + n = 2k$ for some $k \in \mathbb{Z}$ (this is the IH). Then

$$(n + 1)^2 + (n + 1) = n^2 + 2n + 1 + n + 1 = (n^2 + n) + (2n + 2)$$

even by IH

$\begin{aligned} &\equiv 2k + 2(n + 1) = 2(k + n + 1) \quad \checkmark \\ &\in \mathbb{Z} \end{aligned}$$
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “$n^2 + n = 2k$ for some integer k”.)

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1) : \quad (n + 1)^2 + (n + 1) = 2\ell \text{ for some } \ell \in \mathbb{Z}$$

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

Fix $n \geq 0$ and assume $n^2 + n = 2k$ for some $k \in \mathbb{Z}$ (this is the IH). Then

$$(n + 1)^2 + (n + 1) = n^2 + 2n + 1 + n + 1 = \underbrace{(n^2 + n) + (2n + 2)}_{\text{even by IH}}$$

$$= 2k + 2(n + 1) = 2(k + n + 1) \in \mathbb{Z}.$$

Conclusion: So since $P(0)$ is true, and $P(n)$ implies $P(n + 1)$, we have $P(k)$ is true for all $k \in \mathbb{Z}_{\geq 0}$. □
Example: Show $n^2 + n$ is even for all $n \in \mathbb{Z}_{\geq 0}$ by induction.

Proof by induction (final draft). For $n = 0$, we have

$$0^2 + 0 = 0 = 2 \times 0,$$

as desired. Next, fix $n \geq 0$ and assume $n^2 + n$ is even. Then $n^2 + n = 2k$ for some $k \in \mathbb{Z}$, so that

$$(n + 1)^2 + (n + 1) = n^2 + 2n + 1 + n + 1 = (n^2 + n) + (2n + 2)$$

$$= 2k + 2(n + 1) \quad \text{by the inductive hypothesis},$$

$$= 2(k + n + 1).$$

So since $k + n + 1 \in \mathbb{Z}$, we have $(n + 1)^2 + (n + 1)$ is even as well. Thus, the claim holds for all $n \geq 0$ by induction. \qed
Example: Show \(n^2 + n \) is even for all \(n \in \mathbb{Z}_{\geq 0} \) by induction.

Proof by induction (final draft). For \(n = 0 \), we have
\[
0^2 + 0 = 0 = 2 \cdot 0,
\]
as desired. Next, fix \(n \geq 0 \) and assume \(n^2 + n \) is even. Then \(n^2 + n = 2k \) for some \(k \in \mathbb{Z} \), so that
\[
(n + 1)^2 + (n + 1) = n^2 + 2n + 1 + n + 1 = (n^2 + n) + (2n + 2)
= 2k + 2(n + 1) \quad \text{by the inductive hypothesis,}
= 2(k + n + 1).
\]

So since \(k + n + 1 \in \mathbb{Z} \), we have \((n + 1)^2 + (n + 1) \) is even as well. Thus, the claim holds for all \(n \geq 0 \) by induction. \(\square \)

Of course, we could have shown this directly!
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft).

Define P_{p_nq}: P_{p_nq} is "if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Base case: The smallest set is the empty set, so the base case is P_{p_0q}.

In fact, the only set of size 0 is \emptyset. So we check P_{p_0q} by computing $|\mathcal{P}(\emptyset)|$: $|\emptyset| = 1 = 2^0$.

Goal: Assume P_{p_nq} and show $P_{p_{n+1}q}$, which is $P_{p_{n+1}q}$: if $|B| = n+1$, then $|\mathcal{P}(B)| = 2^{n+1}$.

(Careful!! Don't use the same set name for the IH and $P_{p_{n+1}q}$ since they must be different sets!!)
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft).
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.”
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$”.

Base case: The smallest set is the empty set, so the base case is $P(0)$.
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$”.

Base case: The smallest set is the empty set, so the base case is $P(0)$. In fact, the only set of size 0 is \emptyset. So we check $P(0)$ by computing $|\mathcal{P}(\emptyset)|$:
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$”.

Base case: The smallest set is the empty set, so the base case is $P(0)$. In fact, the only set of size 0 is \emptyset. So we check $P(0)$ by computing $|\mathcal{P}(\emptyset)|$:

$$|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0. \quad \checkmark$$
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft).

Define $P(n)$: $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$”.

Base case: The smallest set is the empty set, so the base case is $P(0)$. In fact, the only set of size 0 is \emptyset. So we check $P(0)$ by computing $|\mathcal{P}(\emptyset)|$:

$$|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0.$$ ✓

Goal: Assume $P(n)$ and show $P(n + 1)$, which is

$$P(n + 1): \text{ if } |B| = n + 1, \text{ then } |\mathcal{P}(B)| = 2^{n+1}.$$ (Careful!! Don’t use the same set name for the IH and $P(n + 1)$ since they must be different sets!!)
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$”)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

For any set A of size n, assume $|\mathcal{P}(A)| = 2^n$.
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$”)

Inductive step: (Assume $P(n)$ and show $P(n+1)$)
For any set A of size n, assume $|\mathcal{P}(A)| = 2^n$. Now let B be a set of size $n + 1$
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$”)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)
For any set A of size n, assume $|\mathcal{P}(A)| = 2^n$. Now let B be a set of size $n + 1$, and let $b \in B$.
Example: Show that if \(|A| = n\) then \(|\mathcal{P}(A)| = 2^n\).

Proof by induction (first draft). (Continued from previous slide, where \(P(n)\) is “if \(|A| = n\) then \(|\mathcal{P}(A)| = 2^n\”)

Inductive step: (Assume \(P(n)\) and show \(P(n + 1)\))

For any set \(A\) of size \(n\), assume \(|\mathcal{P}(A)| = 2^n\). Now let \(B\) be a set of size \(n + 1\), and let \(b \in B\). Let \(A = B - \{b\}\)
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n”$)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

For any set A of size n, assume $|\mathcal{P}(A)| = 2^n$. Now let B be a set of size $n + 1$, and let $b \in B$. Let $A = B - \{b\}$, so that

$|A| = n$ and $B = A \cup \{b\}$.

Example: Show that if \(|A| = n\) then \(|\mathcal{P}(A)| = 2^n\).

Proof by induction (first draft). (Continued from previous slide, where \(P(n)\) is “if \(|A| = n\) then \(|\mathcal{P}(A)| = 2^n\)”)

Inductive step: (Assume \(P(n)\) and show \(P(n + 1)\))

For any set \(A\) of size \(n\), assume \(|\mathcal{P}(A)| = 2^n\). Now let \(B\) be a set of size \(n + 1\), and let \(b \in B\). Let \(A = B - \{b\}\), so that

\[
|A| = n \quad \text{and} \quad B = A \cup \{b\}.
\]

Then for each subset \(X \subseteq A\), there are exactly two subsets of \(B\):

\[
X \quad \text{and} \quad X \cup \{b\}.
\]
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$”)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

For any set A of size n, assume $|\mathcal{P}(A)| = 2^n$. Now let B be a set of size $n + 1$, and let $b \in B$. Let $A = B - \{b\}$, so that

$$|A| = n \quad \text{and} \quad B = A \cup \{b\}.$$

Then for each subset $X \subseteq A$, there are exactly two subsets of B:

$$X \quad \text{and} \quad X \cup \{b\}.$$

So

$$|\mathcal{P}(B)| = 2|\mathcal{P}(A)|.$$
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$”)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)
For any set A of size n, assume $|\mathcal{P}(A)| = 2^n$. Now let B be a set of size $n + 1$, and let $b \in B$. Let $A = B - \{b\}$, so that

$$|A| = n \quad \text{and} \quad B = A \cup \{b\}.$$

Then for each subset $X \subseteq A$, there are exactly two subsets of B:

$$X \quad \text{and} \quad X \cup \{b\}.$$

So

$$|\mathcal{P}(B)| = 2|\mathcal{P}(A)| \overset{\text{IH}}{=} 2 \times 2^n$$
Example: Show that if \(|A| = n\) then \(|\mathcal{P}(A)| = 2^n\).

Proof by induction (first draft). (Continued from previous slide, where \(P(n)\) is “if \(|A| = n\) then \(|\mathcal{P}(A)| = 2^n\)”)

Inductive step: (Assume \(P(n)\) and show \(P(n + 1)\))

For any set \(A\) of size \(n\), assume \(|\mathcal{P}(A)| = 2^n\). Now let \(B\) be a set of size \(n + 1\), and let \(b \in B\). Let \(A = B - \{b\}\), so that

\(|A| = n\) \hspace{1em} \text{and} \hspace{1em} \(B = A \cup \{b\}\).

Then for each subset \(X \subseteq A\), there are exactly two subsets of \(B\):

\(X\) \hspace{1em} \text{and} \hspace{1em} \(X \cup \{b\}\).

So

\(|\mathcal{P}(B)| = 2|\mathcal{P}(A)| \overset{\text{IH}}{=} 2 * 2^n = 2^{n+1}. \quad \checkmark\)
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is “if $|A| = n$ then $|\mathcal{P}(A)| = 2^n”$)

Inductive step: (Assume $P(n)$ and show $P(n + 1)$)

For any set A of size n, assume $|\mathcal{P}(A)| = 2^n$. Now let B be a set of size $n + 1$, and let $b \in B$. Let $A = B - \{b\}$, so that $|A| = n$ and $B = A \cup \{b\}$.

Then for each subset $X \subseteq A$, there are exactly two subsets of B: X and $X \cup \{b\}$.

So

$$|\mathcal{P}(B)| = 2|\mathcal{P}(A)| \overset{\text{IH}}{=} 2 \times 2^n = 2^{n+1}. \quad \checkmark$$

Conclusion: So since $P(0)$ is true, and $P(n)$ implies $P(n + 1)$, we have $P(k)$ is true for all $k \in \mathbb{Z}_{\geq 0}$. \(\square\)
Example: Show that if $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Proof by induction (final draft). For $n = 0$, we have $A = \emptyset$, and so $\mathcal{P}(A) = \{\emptyset\}$. Thus

$$|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0,$$

as desired. Now fix $n \geq 0$ and assume for any size-n set A, we have $|\mathcal{P}(A)| = 2^n$. Let B be a set of size $n + 1$, and let $b \in B$. Let $A = B - \{b\}$, so that

$$|A| = n \quad \text{and} \quad B = A \cup \{b\}.$$

Then for each subset $X \subseteq A$, there are exactly two subsets of B: X and $X \cup \{b\}$.

So

$$|\mathcal{P}(B)| = 2|\mathcal{P}(A)| = 2 \cdot 2^n = 2^{n+1},$$

by the induction hypothesis. Thus the claim holds for all $n \geq 0$ by induction. \qed
Proof by induction

Outlining your proof:

1. Define $P(n)$.
2. Compute base case.
3. Explicitly state your goal.
4. Do inductive step.
5. State your conclusion.

You try: Exercise 17.
Proof by induction

Outlining your proof:
1. Define $P(n)$.
2. Compute base case.
3. Explicitly state your goal.
4. Do inductive step.
5. State your conclusion.

Rewrite your proof:
1. Write the base case.
2. Fix n and make your inductive hypothesis.
3. Show that the claim holds for $n + 1$.
4. State your conclusion.
Proof by induction

Outlining your proof:
1. Define $P(n)$.
2. Compute base case.
3. Explicitly state your goal.
4. Do inductive step.
5. State your conclusion.

Rewrite your proof:
1. Write the base case.
2. Fix n and make your inductive hypothesis.
3. Show that the claim holds for $n + 1$.
4. State your conclusion.

You try: Exercise 17.