Functions

Some functions you might be familiar with:

\[f(x) = x^2, \quad f(x) = 3x - 2, \quad f(x) = \sqrt{x}, \quad f(x, y) = \left(\begin{array}{c} x \\ y \end{array} \right). \]
Functions

Some functions you might be familiar with:

\[f(x) = x^2, \quad f(x) = 3x-2, \quad f(x) = \sqrt{x}, \quad f(x, y) = \begin{pmatrix} x \\ y \end{pmatrix}. \]

A couple more we’ll need:
Functions

Some functions you might be familiar with:

\[f(x) = x^2, \quad f(x) = 3x - 2, \quad f(x) = \sqrt{x}, \quad f(x, y) = \binom{x}{y}. \]

A couple more we’ll need:

- For \(x \in \mathbb{R} \), the **floor** of \(x \) is the greatest integer that is less than or equal to \(x \), written \(\lfloor x \rfloor \).
Functions

Some functions you might be familiar with:

\[f(x) = x^2, \quad f(x) = 3x - 2, \quad f(x) = \sqrt{x}, \quad f(x, y) = \begin{pmatrix} x \\ y \end{pmatrix}. \]

A couple more we’ll need:

- For \(x \in \mathbb{R} \), the **floor** of \(x \) is the greatest integer that is less than or equal to \(x \), written \([x]\). For example,

\[[1/2] = 0, \quad [-1/2] = -1, \quad [13] = 13, \quad [\pi] = 3. \]
Functions

Some functions you might be familiar with:

\[f(x) = x^2, \quad f(x) = 3x - 2, \quad f(x) = \sqrt{x}, \quad f(x, y) = \begin{pmatrix} x \\ y \end{pmatrix}. \]

A couple more we’ll need:

- For \(x \in \mathbb{R} \), the **floor** of \(x \) is the greatest integer that is less than or equal to \(x \), written \([x]\). For example,
 \[
 \]

- For \(x \in \mathbb{R} \), the **ceiling** of \(x \) is the least integer that is greater than or equal to \(x \), written \([x]\).
Functions

Some functions you might be familiar with:

\[f(x) = x^2, \quad f(x) = 3x - 2, \quad f(x) = \sqrt{x}, \quad f(x, y) = \begin{pmatrix} x \\ y \end{pmatrix}. \]

A couple more we’ll need:

- For \(x \in \mathbb{R} \), the floor of \(x \) is the greatest integer that is less than or equal to \(x \), written \([x]\). For example,
 \[
 \]

- For \(x \in \mathbb{R} \), the ceiling of \(x \) is the least integer that is greater than or equal to \(x \), written \([x]\). For example,
 \[
 \]
Functions

- For $x \in \mathbb{R}$, the floor of x is the greatest integer that is less than or equal to x, written $\lfloor x \rfloor$. For example,

$$\lfloor 1/2 \rfloor = 0, \quad \lfloor -1/2 \rfloor = -1, \quad \lfloor 13 \rfloor = 13, \quad \lfloor \pi \rfloor = 3.$$

- For $x \in \mathbb{R}$, the ceiling of x is the least integer that is greater than or equal to x, written $\lceil x \rceil$. For example,

$$\lceil 1/2 \rceil = 1, \quad \lceil -1/2 \rceil = 0, \quad \lceil 13 \rceil = 13, \quad \lceil \pi \rceil = 4.$$

- The absolute value of a real number x is

$$|x| = \begin{cases} x & \text{if } x \text{ is nonnegative}, \\ -x & \text{if } x \text{ is negative}, \end{cases}$$

so that $|x|$ is always nonnegative.
Functions

- For $x \in \mathbb{R}$, the **floor** of x is the greatest integer that is less than or equal to x, written $[x]$. For example,

- For $x \in \mathbb{R}$, the **ceiling** of x is the least integer that is greater than or equal to x, written $\lceil x \rceil$. For example,

- The **absolute value** of a real number x is

 $$|x| = \begin{cases}
 x & \text{if } x \text{ is nonnegative}, \\
 -x & \text{if } x \text{ is negative},
 \end{cases}$$

 so that $|x|$ is always nonnegative. For example,

 $|1/2| = 1/2, \quad |-1/2| = 1/2, \quad |0| = 0, \quad |\pi| = \pi.$
What makes a function?

- You need a domain (input).

The function should be well-defined (part 1): for every input, there is exactly one output. Namely, if \(f(a) = b_1 \) and \(f(a) = b_2 \), then \(b_1 = b_2 \).

The domain together with a function determines a range or image (output).

Example Consider \(f(x) = x^2 \). If the domain is \(\mathbb{R} \), then the range is \(\mathbb{R} \geq 0 \). If the domain is \(\mathbb{R} \geq 1 \), then the range is \(\mathbb{R} \geq 1 \). Either way, \(f \) is well-defined "on its domain".
What makes a function?
 ▶ You need a domain (input).
What makes a function?

- You need a **domain** (input).
- The function should be **well-defined** (part 1): for every input, there is exactly one output. Namely,

 \[
 \text{if } f(a) = b_1 \text{ and } f(a) = b_2, \text{ then } b_1 = b_2.
 \]

\[b_1\]
\[?\]
\[b_2\]

\[a\]

Bad:
\[\sqrt{4} \rightarrow -2, \sqrt{4} \rightarrow 2\]
What makes a function?

- You need a **domain** (input).
- The function should be **well-defined** (part 1): for every input, there is exactly one output. Namely,

 \[
 \text{if } f(a) = b_1 \text{ and } f(a) = b_2, \text{ then } b_1 = b_2.
 \]

The domain together with a function determines a **range** or **image** (output).
What makes a function?

- You need a **domain** (input).
- The function should be **well-defined** (part 1): for every input, there is exactly one output. Namely,

 \[
 \text{if } f(a) = b_1 \text{ and } f(a) = b_2, \text{ then } b_1 = b_2.
 \]

The domain together with a function determines a **range or image** (output).

Example

Consider \(f(x) = x^2 \).
What makes a function?

- You need a **domain** (input).
- The function should be **well-defined** (part 1): for every input, there is exactly one output. Namely,

\[
\text{if } f(a) = b_1 \text{ and } f(a) = b_2, \text{ then } b_1 = b_2.
\]

The domain together with a function determines a **range** or **image** (output).

Example

Consider \(f(x) = x^2 \).

If the domain is \(\mathbb{R} \)
What makes a function?

- You need a **domain** (input).
- The function should be **well-defined** (part 1): for every input, there is exactly one output. Namely,

 \[
 \text{if } f(a) = b_1 \text{ and } f(a) = b_2, \text{ then } b_1 = b_2.
 \]

The domain together with a function determines a **range** or **image** (output).

Example

Consider \(f(x) = x^2 \).

If the domain is \(\mathbb{R} \), then the range is \(\mathbb{R}_{\geq 0} \).
What makes a function?

- You need a **domain** (input).
- The function should be **well-defined** (part 1): for every input, there is exactly one output. Namely,

\[
\text{if } f(a) = b_1 \text{ and } f(a) = b_2, \text{ then } b_1 = b_2.
\]

The domain together with a function determines a **range** or **image** (output).

Example

Consider \(f(x) = x^2 \).

If the domain is \(\mathbb{R} \), then the range is \(\mathbb{R}_{\geq 0} \).

If the domain is \(\{-1\} \)
What makes a function?

- You need a **domain** (input).
- The function should be **well-defined** (part 1): for every input, there is exactly one output. Namely, if \(f(a) = b_1 \) and \(f(a) = b_2 \), then \(b_1 = b_2 \).

The domain together with a function determines a **range** or **image** (output).

Example

Consider \(f(x) = x^2 \).

If the domain is \(\mathbb{R} \), then the range is \(\mathbb{R}_{\geq 0} \).

If the domain is \(\{-1\} \), then the range is \(\{1\} \).
What makes a function?

- You need a **domain** (input).
- The function should be **well-defined** (part 1): for every input, there is exactly one output. Namely,

 \[
 \text{if } f(a) = b_1 \text{ and } f(a) = b_2, \text{ then } b_1 = b_2.
 \]

The domain together with a function determines a range or image (output).

Example

Consider \(f(x) = x^2 \).

If the domain is \(\mathbb{R} \), then the range is \(\mathbb{R}_{\geq 0} \).

If the domain is \(\{-1\} \), then the range is \(\{1\} \).

Either way, \(f \) is well-defined “on its domain”.
Like we can pick a universal set, we can also pick a codomain, a set containing the range of f.
Like we can pick a universal set, we can also pick a **codomain**, a set containing the range of f.

If f is a function with domain A and codomain B, we say f is a **function** or **map** or **transformation** from A to B, and we write

$$f : A \to B.$$
Like we can pick a universal set, we can also pick a codomain, a set containing the range of f.
If f is a function with domain A and codomain B, we say f is a function or map or transformation from A to B, and we write
$$f : A \rightarrow B.$$
For $a \in A$, we write
$$f : a \mapsto f(a),$$
where “\mapsto” reads “maps to”.

If you have a function $f : A \rightarrow B$, and $A_1 \subseteq A$, you can restrict f to the domain A_1, written $f|_{A_1} : A_1 \rightarrow B$.
This means that the definition of the function doesn't change, you just consider its image on fewer elements.
If you pick a bad codomain, your expression is no longer a function (not well-defined, part 2).
Example $f : \mathbb{R} \rightarrow \mathbb{Z}$ defined by $x \mapsto x$ is not a function.
Like we can pick a universal set, we can also pick a codomain, a set containing the range of \(f \).

If \(f \) is a function with domain \(A \) and codomain \(B \), we say \(f \) is a function or map or transformation from \(A \) to \(B \), and we write

\[
f : A \rightarrow B.
\]

For \(a \in A \), we write

\[
f : a \mapsto f(a),
\]

where “\(\mapsto \)” reads “maps to”.

If you have a function \(f : A \rightarrow B \), and \(A' \subseteq A \), you can restrict \(f \) to the domain \(A' \), written

\[
f|_{A'} : A' \rightarrow B.
\]

This means that the definition of the function doesn’t change, you just consider its image on fewer elements.

If you pick a bad codomain, your expression is no longer a function (not well-defined, part 2).
Like we can pick a universal set, we can also pick a **codomain**, a set containing the range of f.

If f is a function with domain A and codomain B, we say f is a **function** or map or transformation from A to B, and we write

$$f : A \rightarrow B.$$

For $a \in A$, we write

$$f : a \mapsto f(a),$$

where “\mapsto” reads “maps to”.

If you have a function $f : A \rightarrow B$, and $A' \subseteq A$, you can **restrict** f to the domain A', written

$$f|_{A'} : A' \rightarrow B.$$

This means that the definition of the function doesn’t change, you just consider its image on fewer elements.

If you pick a bad codomain, your expression is no longer a function (not well-defined, part 2).

Example

$$f : \mathbb{R} \rightarrow \mathbb{Z}$$

defined by $x \mapsto x$

is not a function.
Example
Consider the function

\[f : \mathbb{R} \rightarrow \mathbb{R} \]

\[x \mapsto x^2. \]

Then the image of \(f \) is \(\mathbb{R}_{\geq 0} \).
Example
Consider the function

\[f : \mathbb{R} \to \mathbb{R} \]
\[x \mapsto x^2. \]

Then the image of \(f \) is \(\mathbb{R}_{\geq 0} \). If we restrict \(f \) to \(\{ -1 \} \subseteq \mathbb{R} \), the image of \(f|_{\{-1\}} : \{-1\} \to \mathbb{R} \) is \(\{1\} \).
Example

Consider the function

\[f : \mathbb{R} \rightarrow \mathbb{R} \]
\[x \mapsto x^2. \]

Then the image of \(f \) is \(\mathbb{R}_{\geq 0} \). If we restrict \(f \) to \(\{-1\} \subseteq \mathbb{R} \), the image of \(f|_{\{-1\}} : \{-1\} \rightarrow \mathbb{R} \) is \(\{1\} \).

The functions

\[g : \mathbb{R} \rightarrow \mathbb{C} \quad \text{and} \quad h : \mathbb{R} \rightarrow \mathbb{C} \cup \mathbb{C}^{15} \]
\[x \mapsto x^2 \quad \text{and} \quad x \mapsto x^2 \]

both have image \(\mathbb{R}_{\geq 0} \).
Example
Consider the function

\[f : \mathbb{R} \to \mathbb{R} \]
\[x \mapsto x^2. \]

Then the image of \(f \) is \(\mathbb{R}_{\geq 0} \). If we restrict \(f \) to \(\{-1\} \subseteq \mathbb{R} \), the image of \(f|_{\{-1\}} : \{-1\} \to \mathbb{R} \) is \{1\}.

The functions

\[g : \mathbb{R} \to \mathbb{C} \quad and \quad h : \mathbb{R} \to \mathbb{C} \cap \mathbb{C}^{15} \]
\[x \mapsto x^2 \quad and \quad x \mapsto x^2 \]

both have image \(\mathbb{R}_{\geq 0} \).

The map

\[\varphi : \mathbb{R} \to \mathbb{Z} \]
\[x \mapsto x^2 \]

is not well-defined, since the image is not contained in the codomain.
The image of an element \(a \in A \) is just \(f(a) \).
The image of an element \(a \in A \) is just \(f(a) \). The preimage is defined on any element of subset of the codomain. Namely, the preimage of \(b \in B \) is the set of elements \(a \in A \) such that \(f(a) = b \):

\[
 f^{-1}(b) = \{ a \in A \mid f(a) = b \}.
\]

Notice, either way, a preimage is a set!!
The image of an element \(a \in A \) is just \(f(a) \). The preimage is defined on any element of subset of the codomain. Namely, the preimage of \(b \in B \) is the set of elements \(a \in A \) such that \(f(a) = b \):

\[
f^{-1}(b) = \{ a \in A \mid f(a) = b \}.
\]

The preimage of a subset \(B' \subseteq B \) is defined similarly, only using containment:

\[
f^{-1}(B') = \{ a \in A \mid f(a) \in B' \}.
\]
The image of an element \(a \in A \) is just \(f(a) \). The preimage is defined on any element of subset of the codomain. Namely, the preimage of \(b \in B \) is the set of elements \(a \in A \) such that \(f(a) = b \):

\[
f^{-1}(b) = \{ a \in A \mid f(a) = b \}.
\]

The preimage of a subset \(B' \subseteq B \) is defined similarly, only using containment:

\[
f^{-1}(B') = \{ a \in A \mid f(a) \in B' \}.
\]

Notice, either way, a preimage is a set!!
The image of an element \(a \in A \) is just \(f(a) \). The preimage is defined on any element of subset of the codomain. Namely, the preimage of \(b \in B \) is the set of elements \(a \in A \) such that \(f(a) = b \):

\[
f^{-1}(b) = \{ a \in A \mid f(a) = b \}.
\]

The preimage of a subset \(B' \subseteq B \) is defined similarly, only using containment:

\[
f^{-1}(B') = \{ a \in A \mid f(a) \in B' \}.
\]

Notice, either way, a preimage is a set!! A function \(f : A \rightarrow B \) is invertible if for every \(b \in B \), \(f^{-1}(b) \) has exactly one element.
A function is called **one-to-one** or **injective** if every element in the range has at most one element in its preimage.
A function is called **one-to-one** or **injective** if every element in the range has at most one element in its preimage. Some examples of **injective functions**:

\[f(x) = 3x - 5 \text{ with domain } \mathbb{C} \]
A function is called **one-to-one** or **injective** if every element in the range has at most one element in its preimage.

Some examples of **injective functions**:

\[f(x) = 3x - 5 \text{ with domain } \mathbb{C}, \quad f(x) = x^2 \text{ with domain } \mathbb{R}_{\geq 0} \]
A function is called one-to-one or injective if every element in the range has at most one element in its preimage. Some examples of injective functions:

\[f(x) = 3x - 5 \text{ with domain } \mathbb{C}, \quad f(x) = x^2 \text{ with domain } \mathbb{R}_{\geq 0}, \]

\[f(x) = \lfloor x \rfloor \text{ with domain } \mathbb{Z} \]
A function is called **one-to-one** or **injective** if every element in the range has at most one element in its preimage.

Some examples of **injective functions**:

\[f(x) = 3x - 5 \text{ with domain } \mathbb{C}, \quad f(x) = x^2 \text{ with domain } \mathbb{R}_{\geq 0}, \]

\[f(x) = \lfloor x \rfloor \text{ with domain } \mathbb{Z}, \]

\[A \rightarrow f \rightarrow B \]
A function is called **one-to-one** or **injective** if every element in the range has at most one element in its preimage.

Some examples of **functions that are not injective**:

\[f(x) = 3x - 5 \] with domain time on a clock
A function is called **one-to-one** or **injective** if every element in the range has at most one element in its preimage.

Some examples of functions that are **not** injective:

\[f(x) = 3x - 5 \] with domain time on a clock,
\[f(x) = x^2 \] with domain \(\mathbb{R} \)
A function is called **one-to-one** or **injective** if every element in the range has at most one element in its preimage.

Some examples of **functions that are not injective**:

\[
\begin{align*}
f(x) &= 3x - 5 \text{ with domain time on a clock}, \\
f(x) &= x^2 \text{ with domain } \mathbb{R}, \\
f(x) &= \lfloor x \rfloor \text{ with domain } \mathbb{Q}
\end{align*}
\]
A function is called **one-to-one** or **injective** if every element in the range has at most one element in its preimage. Some examples of **functions that are not injective:**

\[f(x) = 3x - 5 \] with domain time on a clock,
\[f(x) = x^2 \] with domain \(\mathbb{R} \),
\[f(x) = \lfloor x \rfloor \] with domain \(\mathbb{Q} \),
A function is called *onto* or *surjective* if the codomain and the image are the same thing.

Some examples of *surjective functions*:

\[f(x) = 3x - 5 \] with domain and codomain \(\mathbb{C} \),
A function is called *onto* or *surjective* if the codomain and the image are the same thing.

Some examples of surjective functions:

- \(f(x) = 3x - 5 \) with domain and codomain \(\mathbb{C} \),
- \(f(x) = x^2 \) with domain \(\mathbb{R} \) and codomain \(\mathbb{R}_{\geq 0} \),
A function is called onto or surjective if the codomain and the image are the same thing.

Some examples of surjective functions:

\[f(x) = 3x - 5 \] with domain and codomain \(\mathbb{C} \),
\[f(x) = x^2 \] with domain \(\mathbb{R} \) and codomain \(\mathbb{R}_{\geq 0} \),
\[f(x) = \lfloor x \rfloor \] with domain \(\mathbb{R} \) and codomain \(\mathbb{Z} \).
A function is called *onto* or *surjective* if the codomain and the image are the same thing.

Some examples of surjective functions:

\[f(x) = 3x - 5 \text{ with domain and codomain } \mathbb{C}, \]
\[f(x) = x^2 \text{ with domain } \mathbb{R} \text{ and codomain } \mathbb{R}_{\geq 0}, \]
\[f(x) = \lfloor x \rfloor \text{ with domain } \mathbb{R} \text{ and codomain } \mathbb{Z}, \]
A function is called *onto* or *surjective* if the codomain and the image are the same thing. Some examples of **functions that are not** surjective:

\[f(x) = 3x - 5 \] with domain \(\mathbb{R} \) and codomain \(\mathbb{C} \)
A function is called \textit{onto} or \textit{surjective} if the codomain and the image are the same thing.

Some examples of \textbf{functions that are not surjective}:

\[f(x) = 3x - 5 \] with domain \(\mathbb{R} \) and codomain \(\mathbb{C} \),
\[f(x) = x^2 \] with domain and codomain \(\mathbb{R} \),
A function is called *onto* or *surjective* if the codomain and the image are the same thing.

Some examples of functions that are **not** surjective:

- \(f(x) = 3x - 5 \) with domain \(\mathbb{R} \) and codomain \(\mathbb{C} \),
- \(f(x) = x^2 \) with domain and codomain \(\mathbb{R} \),
- \(f(x) = \lfloor x \rfloor \) with domain and codomain \(\mathbb{Q} \)
A function is called onto or surjective if the codomain and the image are the same thing. Some examples of functions that are not surjective:

\[f(x) = 3x - 5 \] with domain \(\mathbb{R} \) and codomain \(\mathbb{C} \),
\[f(x) = x^2 \] with domain and codomain \(\mathbb{R} \),
\[f(x) = \lfloor x \rfloor \] with domain and codomain \(\mathbb{Q} \),
A function that is both injective and surjective is bijective or a one-to-one correspondence.
A function that is both injective and surjective is bijective or a one-to-one correspondence.

\[A \rightarrow B \]

No:
\[\begin{array}{ccc}
\bullet c & \rightarrow & y \\
\bullet b & \rightarrow & x \\
\bullet a & \rightarrow & B \\
A \end{array} \]

No:
\[\begin{array}{ccc}
\bullet c & \rightarrow & 3 \\
\bullet b & \rightarrow & 2 \\
\bullet a & \rightarrow & 1 \\
A & \rightarrow & B \\
\end{array} \]

Yes:
\[\begin{array}{ccc}
\bullet c & \rightarrow & 3 \\
\bullet b & \rightarrow & 2 \\
\bullet a & \rightarrow & 1 \\
A & \rightarrow & B \\
\end{array} \]

Theorem

A function \(f : A \rightarrow B \) is bijective if and only if it is invertible.
A function that is both injective and surjective is **bijective** or a one-to-one correspondence.

Theorem

* A function $f : A \rightarrow B$ is bijective if and only if it is invertible.

You try: Exercise 8.
Let \(f : A \to B \) and \(g : B \to C \).

Then the composition of \(g \) and \(f \) is

\[
g \circ f = g(f(a)) : A \to C.
\]
Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \).

Then the composition of \(g \) and \(f \) is

\[
g \circ f = g(f(a)) : A \rightarrow C.
\]

Example

Let

\[
\begin{align*}
A & \rightarrow B \\
\begin{array}{c}
a \\
b \\
c
\end{array} & \rightarrow \begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}
\end{align*}
\]

and

\[
\begin{align*}
B & \rightarrow C \\
\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array} & \rightarrow \begin{array}{c}
x \\
y \\
z
\end{array}
\end{align*}
\]

What is \(g \circ f \)?
Let
\[f : A \to B \quad \text{and} \quad g : B \to C. \]

Then the \textbf{composition} of \(g \) and \(f \) is
\[g \circ f = g(f(a)) : A \to C. \]

\textbf{Example}
Let \(f(x) = x^2 + 1 \) and let \(g(x) = \lfloor x \rfloor \), both with domain and codomain \(\mathbb{R} \).
Let \(f : A \to B \) and \(g : B \to C \).

Then the **composition** of \(g \) and \(f \) is

\[
g \circ f = g(f(a)) : A \to C.
\]

Example

Let \(f(x) = x^2 + 1 \) and let \(g(x) = \lfloor x \rfloor \), both with domain and codomain \(\mathbb{R} \). Since the domain and codomain are equal for both, I can consider both \(f \circ g \) and \(g \circ f \).
Let

\[f : A \to B \quad \text{and} \quad g : B \to C. \]

Then the composition of \(g \) and \(f \) is

\[g \circ f = g(f(a)) : A \to C. \]

Example

Let \(f(x) = x^2 + 1 \) and let \(g(x) = \lfloor x \rfloor \), both with domain and codomain \(\mathbb{R} \). Since the domain and codomain are equal for both, I can consider both \(f \circ g \) and \(g \circ f \). We have

\[f \circ g = \lfloor x \rfloor^2 + 1 \quad \text{and} \quad g \circ f = \lfloor x^2 + 1 \rfloor. \]
Let
\[f : A \to B \quad \text{and} \quad g : B \to C. \]

Then the composition of \(g \) and \(f \) is
\[g \circ f = g(f(a)) : A \to C. \]

Example

Let \(f(x) = x^2 + 1 \) and let \(g(x) = [x] \), both with domain and codomain \(\mathbb{R} \). Since the domain and codomain are equal for both, I can consider both \(f \circ g \) and \(g \circ f \). We have
\[f \circ g = [x]^2 + 1 \quad \text{and} \quad g \circ f = [x^2 + 1]. \]

You try: Exercise 9.
Let

\[f : A \to B \quad \text{and} \quad g : B \to C. \]

Then the composition of \(g \) and \(f \) is

\[g \circ f = g(f(a)) : A \to C. \]

Example

Let \(f(x) = x^2 + 1 \) and let \(g(x) = [x] \), both with domain and codomain \(\mathbb{R} \). Since the domain and codomain are equal for both, I can consider both \(f \circ g \) and \(g \circ f \). We have

\[f \circ g = [x]^2 + 1 \quad \text{and} \quad g \circ f = [x^2 + 1]. \]

You try: Exercise 9.

Theorem

Let \(f : A \to B \) and \(g : B \to C \) be functions. If both \(f \) and \(g \) are one-to-one functions, then \(g \circ f \) is also one-to-one.
Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \).

Then the composition of \(g \) and \(f \) is

\[
g \circ f = g(f(a)) : A \rightarrow C.
\]

Example

Let \(f(x) = x^2 + 1 \) and let \(g(x) = \lfloor x \rfloor \), both with domain and codomain \(\mathbb{R} \). Since the domain and codomain are equal for both, I can consider both \(f \circ g \) and \(g \circ f \). We have

\[
f \circ g = \lfloor x \rfloor^2 + 1 \quad \text{and} \quad g \circ f = \lfloor x^2 + 1 \rfloor.
\]

You try: Exercise 9.

Theorem

Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \) be functions. If both \(f \) and \(g \) are one-to-one functions, then \(g \circ f \) is also one-to-one.

You try: Exercise 10.