From last time:

A Pythagorean triple is a triplet of positive integers \(a, b, c \in \mathbb{Z}_{>0} \) satisfying \(a^2 + b^2 = c^2 \).

Ex: \(3^2 + 4^2 = 5^2 \), \(5^2 + 12^2 = 13^2 \), and \(8^2 + 15^2 = 17^2 \).

Last time, we used factorization and divisors to help us prove the following.

1. If \((a, b, c) \) is a Pythagorean triple, then so is \((na, nb, nc) \) for any \(n \in \mathbb{Z}_{>0} \).
2. All primitive Pythagorean triples (those with no common divisors) are characterized by

\[
\begin{align*}
 a &= st, \\
 b &= \frac{s^2 - t^2}{2}, \\
 c &= \frac{s^2 + t^2}{2},
\end{align*}
\]

for odd integers \(s > t \geq 1 \) with no common factors.

Today: Another approach, using geometry.

Pythagorean triples and the unit circle

For any \(c \neq 0 \), we have

\((a, b, c) \) is a solution to \(a^2 + b^2 = c^2 \)

if and only if

\((a, b, c) \) is a solution to \(\left(\frac{a}{c} \right)^2 + \left(\frac{b}{c} \right)^2 = 1 \).

Let \(x = a/c \) and \(y = b/c \). Then solutions look like

\[
\begin{align*}
x^2 + y^2 &= 1: \\
(x, y)
\end{align*}
\]

Integer solutions \((a, b, c) \) occur whenever \(x \) and \(y \) are rational.
Pythagorean triples and the unit circle

\[x^2 + y^2 = 1 \]

Integer solutions to \(a^2 + b^2 = c^2 \) occur whenever \(x \) and \(y \) are rational. (Let \(c \) be any common multiple of the denominators of \(x \) and \(y \).)

Four obvious rational points: \((1,0), (0,1), (-1,0), \) and \((0, -1)\).

Take, for example, the point \(P = (-1,0) \).

Now let \((q, r)\) be any other rational point \((q, r) \in \mathbb{Q} \) on the circle. Consider the line \(L \) connecting those two points. Rational slope!
Pythagorean triples and the unit circle

If we take a line through $P = (-1, 0)$ and another rational point (q, r) on the unit circle, that line will have rational slope.

$x^2 + y^2 = 1$

Conversely, take any line with rational slope m that intersects P,

$L : y = m(x + 1), \quad m \in \mathbb{Q}$

(\text{using point-slope formula}).

Let (x, y) be the other point where the line intersects the circle. Solve.
Pythagorean triples and the unit circle

\[x^2 + y^2 = 1 \]

\[L : y = m(x + 1), \quad m \in \mathbb{Q} \]

Two points of intersection:
\((-1, 0)\) and \(\left(\frac{1-m^2}{1+m^2}, \frac{2m}{1+m^2}\right)\)

Both rational!!

Theorem

Every point on the circle \(x^2 + y^2 = 1\) *whose coordinates are rational numbers can be obtained from the formula*

\[(x, y) = \left(\frac{1-m^2}{1+m^2}, \frac{2m}{1+m^2}\right)\]

by substituting in rational numbers for \(m\) *or taking the limit* \(m \to \infty\).
Theorem

Every point on the circle \(x^2 + y^2 = 1 \) whose coordinates are rational numbers can be obtained from the formula

\[
(x, y) = \left(\frac{1 - m^2}{1 + m^2}, \frac{2m}{1 + m^2} \right)
\]

by substituting in rational numbers for \(m \) or taking the limit \(m \to \infty \).

Relating back to last time: rational points \((x, y)\) on the unit circle correspond to primitive Pythagorean triples \((a, b, c)\) as follows:

Process:

- Put \(x \) and \(y \) into lowest terms.
- Let \(c \) be the smallest common multiple of their denominators.
- Let \(a = xc \) and \(b = yc \)

Example:

\[
(x, y) = (3/5, 4/5)
\]

\[
c = 5
\]

\[
a = 3 \text{ and } b = 4
\]

Last time: \((a, b, c) = (st, \frac{1}{2}(s^2 - t^2), \frac{1}{2}(s^2 + t^2))\)

Substitute \(m = u/v \). Then let \(u = \frac{1}{2}(s + t), v = \frac{1}{2}(s - t) \).