Exercise 37. For each odd prime \(p \), we consider the two numbers

\[
A = \text{sum of all } 1 \leq a < p \text{ such that } a \text{ is a quadratic residue modulo } p,
\]

\[
B = \text{sum of all } 1 \leq a < p \text{ such that } a \text{ is a nonresidue modulo } p.
\]

For example, if \(p = 11 \), then the quadratic residues are

\[
1^2 \equiv 1 \pmod{11}, \quad 2^2 \equiv 4 \pmod{11}, \quad 3^2 \equiv 9 \pmod{11},
\]

\[
4^2 \equiv 5 \pmod{11}, \quad \text{and} \quad 5^2 \equiv 3 \pmod{11}.
\]

So

\[
A = 1 + 4 + 9 + 5 + 3 = 22 \quad \text{and} \quad B = 2 + 6 + 7 + 8 + 10 = 33.
\]

(a) Make a list of the quadratic residues for all odd primes \(p < 20 \).

See below.

(b) Add to your list \(A, B, \) and \(A + B \) for all odd primes \(p < 20 \).

<table>
<thead>
<tr>
<th>(p)</th>
<th>residues</th>
<th>(A)</th>
<th>(B)</th>
<th>(A + B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1,4</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>1,2,4</td>
<td>7</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>1,3,4,5,9</td>
<td>11</td>
<td>44</td>
<td>55</td>
</tr>
<tr>
<td>13</td>
<td>1,3,4,9,10,12</td>
<td>39</td>
<td>39</td>
<td>78</td>
</tr>
<tr>
<td>17</td>
<td>1,2,4,8,9,13,15,16</td>
<td>68</td>
<td>68</td>
<td>136</td>
</tr>
<tr>
<td>19</td>
<td>1,4,5,6,7,9,11,16,17</td>
<td>76</td>
<td>95</td>
<td>171</td>
</tr>
</tbody>
</table>

(c) What is the value of \(A + B \) in general?

We have

\[
A + B \equiv \sum_{k=1}^{p-1} k = \frac{(p-1)p}{2}.
\]

Note that this is a multiple of \(p \) (since \(p-1 \) is even, so that \((p-1)/2 \in \mathbb{Z} \)). Therefore \(A + B \) is always congruent to 0 (mod \(p \)).

(d) Use induction on positive integers \(n \) to prove that

\[
1^2 + 2^2 + \cdots + n^2 = n(n+1)(2n+1)/6.
\]
Proof. For \(n = 1 \), we have \(1(1 + 1)(2 \cdot 1 + 1)/6 = 1 \cdot 2 \cdot 3/6 = 1 = 1^2 \), as desired.

Now fix \(n \), and assume \(1^2 + 2^2 + \cdots + n^2 = n(n + 1)(2n + 1)/6 \). Then
\[
1^2 + 2^2 + \cdots + n^2 + (n + 1)^2 = \frac{n(n + 1)(2n + 1)}{6} + (n + 1)^2
= \frac{2n^3 + 3n^2 + n + 6(n^2 + 2n + 1)}{6}
= \frac{2n^3 + 9n^2 + 13n + 6}{6}
= \frac{(n + 1)(n + 2)(2n + 3)}{6}
= \frac{(n + 1)((n + 1) + 1)(2(n + 1) + 1)}{6},
\]
as desired. So our equality holds for \(n \geq 1 \) by induction. \(\square \)

(e) Compute \(A \) (mod \(p \)) and \(B \) (mod \(p \)). Find a pattern and use the previous part to prove that it is correct.

Answer. By the previous part, we have
\[
A \equiv_p 1^2 + 2^2 + \cdots + \left(\frac{p - 1}{2}\right)^2 \equiv_p \frac{1}{6} \left(\frac{p - 1}{2}\right) \equiv_p \frac{1}{2} \left(\frac{p + 1}{2}\right) p.
\]
For \(p > 3 \), \(\gcd(6, p) = 1 \), so that \(\frac{1}{6} \left(\frac{p - 1}{2}\right) \in \mathbb{Z} \), and \(A \) is a multiple of \(p \). So \(A \equiv_p 0 \).

For \(p = 3 \), we already computed \(A = 1 \) (which matches our formula here too).

Now, since \(A + B \equiv_p 0 \) (seen above), this means that \(B \) must also be congruent to 0 mod \(p \) (except of course when \(p = 3 \), which is computed explicitly above). \(\square \)

(f) Show that if \(p \equiv_4 1 \), and \(n_1, \ldots, n_r \) are the numbers between 1 and \((p - 1)/2 \) that are residues modulo \(p \), then \(n_1, \ldots, n_r, p - n_r, \ldots, p - n_1 \) is the complete set of residues modulo \(p \).

Proof. If \(a \) is a quadratic residue, then \(a \equiv_p b^2 \) for some \(b \). Also, if \(p \equiv_4 1 \), then \(-1\) is a quadratic residue, i.e. there is some \(\epsilon \) for which \(\epsilon^2 \equiv_p -1 \). So
\[
p - a \equiv_p -a \equiv_p \epsilon^2 b^2 = (\epsilon b)^2.
\]
So \(p - a \) is also a quadratic residue. In particular, the map \(x \mapsto p - x \) gives a bijection between the numbers between 1 and \((p - 1)/2 \) that are residues modulo \(p \) and the numbers between \((p + 1)/2 \) and \(p \) that are residues modulo \(p \) (it is bijective because it is its own inverse). So if \(n_1, \ldots, n_r \) are the numbers between 1 and \((p - 1)/2 \) that are residues modulo \(p \), then \(n_1, \ldots, n_r, p - n_r, \ldots, p - n_1 \) is the complete set of residues modulo \(p \). \(\square \)

(g) Use the previous parts to show that if \(p \equiv_4 1 \), then \(A = B \).

Proof. If \(p \equiv_4 1 \), then
\[
A = n_1 + \cdots + n_r + (p - n_r) + \cdots + (p - n_1) = \left(\frac{p - 1}{4}\right)p = \frac{1}{2} \left(\frac{(p - 1)p}{2}\right) = \frac{A + B}{2}.
\]
So \(A = B \). \(\square \)
Exercise 38. Determine whether each of the following congruences has a solution. (All of the moduli are primes.)

(a) \(x^2 \equiv -1 \pmod{5987} \) \hspace{1cm} 5987 \equiv 4 \pmod{4}, so there is no solution.
(b) \(x^2 \equiv 6780 \pmod{6781} \)

Note 6780 \(\equiv -1 \pmod{6781} \). There is a solution, since 6781 \(\equiv 1 \pmod{4} \). The solutions are \(x \equiv 995 \) and \(x \equiv 5786 \) modulo 6781.

(c) \(x^2 + 14x - 35 \equiv 0 \pmod{337} \)

Using the quadratic formula, the solutions are \(x \equiv \frac{-14 \pm \sqrt{336}}{2} \). We know 2 is invertible, since it’s relatively prime to 337. So we just need to know if 336 (i.e. \(-1\)) has a square root modulo 337. It does, since 337 \(\equiv 1 \pmod{4} \), and so there is a solution. In fact, 148\(^2 \equiv -1 \pmod{337} \) and 189\(^2 \equiv -1 \pmod{337} \), so the original problem has solutions \(x \equiv 67 \pmod{337} \) and \(x \equiv 256 \pmod{337} \).

(d) \(x^2 - 64x + 943 \equiv 0 \pmod{3011} \)

This time the quadratic formula gives \(x \equiv \frac{64 \pm \sqrt{324}}{2} \). Here, 324 \(= 18^2 \) (as integers!), so \(x = 23 \) and 41 are actually roots of the polynomial \(x^2 - 64x + 943 \) (not just modulo 3011).

Exercise 39. Use the Law of Quadratic Reciprocity to decide whether \(a \) is a square mod \(b \).

(a) \(a = 85, b = 101 \) \hspace{1cm} Yes
(b) \(a = 29, b = 541 \) \hspace{1cm} No
(c) \(a = 101, b = 1987 \) \hspace{1cm} Yes
(d) \(a = 31706, b = 43789 \) \hspace{1cm} No

Exercise 40. Does the congruence

\[x^2 - 3x - 1 \equiv 0 \pmod{31957} \]

have any solutions?

Yes, since \((-3)^2 - 4(1)(-1) = 13\), and \((\frac{13}{31957}) = 1\).

Exercise 41. Let \(p \) be a prime satisfying \(p \equiv -1 \pmod{4} \) and suppose that \(a \) is a quadratic residue modulo \(p \).

(a) Show that \(x = a^{(p+1)/4} \) is a solution to the congruence \(x^2 \equiv a \pmod{p} \).

(This gives an explicit way to find square roots modulo \(p \) for primes congruent to \(-1 \pmod{4}\).)

We have

\[x^2 = (a^{(p+1)/4})^2 = a^{(p+1)/2} = a(a^{(p-1)/2}) \equiv_p a \left(\frac{a}{p} \right) = a, \]

where the second to last equality is by Euler’s criterion, and the last is because \(a \) is a QR.

(b) Find a solution to the congruence \(x^2 \equiv 7 \pmod{787} \).
(Your answer should lie between 1 and 786.)

By the previous part, one solution is \(x = 7^{(787+1)/4} = 7^{197} \). To reduce this, we can use the method of successive squaring to get \(x \equiv_{787} 105 \).