Combinatorics and representation theory of diagram algebras.

Zajj Daugherty

The City College of New York & The CUNY Graduate Center

February 3, 2020

Slides available at https://zdaugherty.ccnysites.cuny.edu/research/
Combinatorial representation theory

Given an algebra A, what are the A-modules/representations? (Actions $A \times V$ and homomorphisms $\varphi: A \to \text{End}_\mathbb{k}V$)

What are the simple/indecomposable A-modules/reps? What are their dimensions?

What is the action of the center of A?

How can I combine modules to make new ones, and what are they in terms of the simple modules?

In combinatorial representation theory, we use combinatorial objects to index (construct a bijection to) modules and representations, and to encode information about them.
Combinatorial representation theory

Representation theory: Given an algebra A...

- What are the A-modules/representations?
 \[(\text{Actions } A \odot V \text{ and homomorphisms } \varphi : A \to \text{End}(V))\]
- What are the simple/indecomposable A-modules/reps?
- What are their dimensions?
- What is the action of the center of A?
- How can I combine modules to make new ones, and what are they in terms of the simple modules?
Combinatorial representation theory

Representation theory: Given an algebra A...

- What are the A-modules/representations?
 \[(\text{Actions } A \triangleleft V \quad \text{and} \quad \text{homomorphisms } \varphi : A \to \text{End}(V))\]
- What are the simple/indecomposable A-modules/reps?
- What are their dimensions?
- What is the action of the center of A?
- How can I combine modules to make new ones, and what are they in terms of the simple modules?

In combinatorial representation theory, we use combinatorial objects to index (construct a bijection to) modules and representations, and to encode information about them.
Motivating example: Schur-Weyl Duality

The **symmetric group** S_k (permutations) as diagrams:
Motivating example: Schur-Weyl Duality

The **symmetric group** S_k (permutations) as diagrams:

(With multiplication given by concatenation)
Motivating example: Schur-Weyl Duality

The **symmetric group** S_k (permutations) as diagrams:

![Diagram of the symmetric group S_k]

(with multiplication given by concatenation)
Motivating example: Schur-Weyl Duality

The **symmetric group** S_k (permutations) as diagrams:

(with multiplication given by concatenation)
Motivating example: Schur-Weyl Duality

\[\text{GL}_n(\mathbb{C}) \text{ acts on } \bigotimes \mathbb{C}^n = (\mathbb{C}^n)^\otimes_k \text{ diagonally.} \]

\[g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k. \]
Motivating example: Schur-Weyl Duality

$GL_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^\otimes k$ diagonally.

$$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = g v_1 \otimes g v_2 \otimes \cdots \otimes g v_k.$$

S_k also acts on $(\mathbb{C}^n)^\otimes k$ by place permutation.
Motivating example: Schur-Weyl Duality

\(\text{GL}_n(\mathbb{C}) \) acts on \(\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k} \) diagonally.

\[
g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.
\]

\(S_k \) also acts on \((\mathbb{C}^n)^{\otimes k} \) by place permutation.

These actions commute!
Motivating example: Schur-Weyl Duality

Schur (1901): S_k and GL_n have commuting actions on $(\mathbb{C}^n)^\otimes k$.

Even better,

$$\text{End}_{\text{GL}_n} \left((\mathbb{C}^n)^\otimes k \right) = \pi(\mathbb{C}S_k) \quad \text{and} \quad \text{End}_{S_k} \left((\mathbb{C}^n)^\otimes k \right) = \rho(\mathbb{C}\text{GL}_n).$$

(all linear maps that commute with GL_n) (img of S_k action)

(img of GL_n action)
Motivating example: Schur-Weyl Duality

Schur (1901): S_k and GL_n have commuting actions on $\left(\mathbb{C}^n\right)^\otimes k$.

Even better,

$$\text{End}_{GL_n}\left(\left(\mathbb{C}^n\right)^\otimes k\right) = \pi(\mathbb{C}S_k) \quad \text{and} \quad \text{End}_{S_k}\left(\left(\mathbb{C}^n\right)^\otimes k\right) = \rho(\mathbb{C}GL_n).$$

(all linear maps that commute with GL_n)\hspace{1cm} (img of S_k action)

Powerful consequence:

The double-centralizer relationship produces

$$\left(\mathbb{C}^n\right)^\otimes k \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda \quad \text{as a } GL_n - S_k \text{ bimodule},$$

where G^λ are distinct irreducible GL_n-modules

S^λ are distinct irreducible S_k-modules
Motivating example: Schur-Weyl Duality

Schur (1901): S_k and GL_n have commuting actions on $(\mathbb{C}^n)^\otimes k$.

Even better,

$$\text{End}_\text{GL}_n \left((\mathbb{C}^n)^\otimes k \right) = \pi(\mathbb{C}S_k) \quad \text{and} \quad \text{End}_{S_k} \left((\mathbb{C}^n)^\otimes k \right) = \rho(\mathbb{C}\text{GL}_n).$$

(All linear maps that commute with GL_n) (img of S_k action) (img of GL_n action)

Powerful consequence:

The double-centralizer relationship produces

$$(\mathbb{C}^n)^\otimes k \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda$$

as a GL_n-S_k bimodule,

where G^λ are distinct irreducible GL_n-modules S^λ are distinct irreducible S_k-modules

For example,

$$\mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n = \left(G \otimes S \right) \oplus \left(G \otimes S \right) \oplus \left(G \otimes S \right)$$
Representation theory of $V^\otimes k$

$V = \mathbb{C} = L(\square)$
Representation theory of $V^\otimes k$

$V = \mathbb{C} = L(\square)$

$L(\square)$
Representation theory of $V^\otimes k$

$V = \mathbb{C} = L(\square)$, \quad $L(\square) \otimes L(\square)$

\[\begin{array}{c}
\emptyset \\
\downarrow \\
\square \\
\downarrow \\
\square \\
\square \\
\square \\
\square \\
\end{array} \]
Representation theory of $V^\otimes k$

$V = \mathbb{C} = L(\square)$, \quad $L(\square) \otimes L(\square) \otimes L(\square)$
Representation theory of $V^\otimes k$

$V = \mathbb{C} = L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square)$
Representation theory of $V^\otimes k$

$V = \mathbb{C} = L(\square)$, \quad $L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots$

\[\emptyset \]

\[\vdots \]

\[\vdots \]

\[\vdots \]
Representation theory of $V^\otimes k$

$$V = \mathbb{C} = L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots$$
Representation theory of $V^\otimes k$

$$V = \mathbb{C} = L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots$$
More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups
(and Lie algebras) acting on
\((\mathbb{C}^n)^\otimes k\) diagonally centralize
the **Brauer algebra**:

\[
\delta_{b,c} \sum_{i=1}^{n} v_i \otimes v_i \otimes v_a \otimes v_d \otimes v_d \\
\]

with \(\bigcirc = n\)

Diagrams encode maps \(V^\otimes k \to V^\otimes k\) that commute with the
action of some classical algebra.
More centralizer algebras

Representation theory of $V^\otimes k$, orthogonal and symplectic:

$V = \mathbb{C} = L(\square)$
More centralizer algebras

Representation theory of $V^\otimes k$, orthogonal and symplectic:

$V = \mathbb{C} = L(\square)$, $L(\square)$

\varnothing

\square
More centralizer algebras

Representation theory of $V^\otimes k$, orthogonal and symplectic:

$V = \mathbb{C} = L(\Box), \quad L(\Box) \otimes L(\Box)$

\[\emptyset \]

\[\begin{array}{c}
\emptyset \\
\Box \\
\emptyset \quad \Box \\
\end{array} \]
More centralizer algebras

Representation theory of $V^\otimes k$, orthogonal and symplectic:

$V = \mathbb{C} = L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square)$
More centralizer algebras

Representation theory of $V^\otimes k$, orthogonal and symplectic:

$V = \mathbb{C} = L(\square), \quad L(\square) \otimes L(\square) \otimes L(\square) \otimes L(\square) \cdots$
More centralizer algebras

Brauer (1937)
Orthogonal and symplectic groups (and Lie algebras) acting on \((\mathbb{C}^n)^\otimes k\) diagonally centralize the Brauer algebra:

\[
\delta_{b,c} \sum_{i=1}^{n} v_i \otimes v_i \otimes v_a \otimes v_d \otimes v_d
\]
with \(\bigcirc = n\)

Temperley-Lieb (1971)
\(\text{GL}_2\) and \(\text{SL}_2\) (and \(\mathfrak{gl}_2\) and \(\mathfrak{sl}_2\)) acting on \((\mathbb{C}^2)^\otimes k\) diagonally centralize the Temperley-Lieb algebra:

\[
\delta_{c,d} \sum_{i=1}^{2} v_a \otimes v_i \otimes v_i \otimes v_b \otimes v_e
\]
with \(\bigcirc = 2\)

Diagrams encode maps \(V^\otimes k \rightarrow V^\otimes k\) that commute with the action of some classical algebra.
More diagram algebras: braids

The **braid group**:

(with multiplication given by concatenation)
More diagram algebras: braids

The **braid group**:

(With multiplication given by concatenation)
More diagram algebras: braids

The affine (one-pole) braid group:

(with multiplication given by concatenation)
Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U} = \mathcal{U}_q g$ be the Drinfeld-Jimbo quantum group associated to Lie algebra g.
Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U} = \mathcal{U}_q \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.

$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R} = \sum_{\mathcal{R}} R_1 \otimes R_2$ that yields a map

$$\tilde{\mathcal{R}}_{VW} : V \otimes W \longrightarrow W \otimes V$$

that

1. satisfies braid relations, and
2. commutes with the action on $V \otimes W$

for any \mathcal{U}-module V.
Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U} = \mathcal{U}_q \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.

$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R} = \sum \mathcal{R}_1 \otimes \mathcal{R}_2$ that yields a map

$$\tilde{\mathcal{R}}_{VW} : V \otimes W \longrightarrow W \otimes V$$

that (1) satisfies braid relations, and

(2) commutes with the action on $V \otimes W$

for any \mathcal{U}-module V.

The braid group shares a commuting action with \mathcal{U} on $V^\otimes k$:
Quantum groups and braids

Fix $q \in \mathbb{C}$, and let $\mathcal{U} = \mathcal{U}_q \mathfrak{g}$ be the Drinfeld-Jimbo quantum group associated to Lie algebra \mathfrak{g}.

$\mathcal{U} \otimes \mathcal{U}$ has an invertible element $\mathcal{R} = \sum \mathcal{R} R_1 \otimes R_2$ that yields a map

$$\tilde{\mathcal{R}}_{VW} : V \otimes W \longrightarrow W \otimes V$$

that (1) satisfies braid relations, and

(2) commutes with the action on $V \otimes W$

for any \mathcal{U}-module V.

The one-pole/affine braid group shares a commuting action with \mathcal{U} on $M \otimes V^\otimes k$:

Around the pole:

$$= \tilde{R}_{MV} \tilde{R}_{VM}$$
Quantum groups and braids

Fix \(q \in \mathbb{C} \), and let \(\mathcal{U} = \mathcal{U}_q \mathfrak{g} \) be the Drinfeld-Jimbo quantum group associated to Lie algebra \(\mathfrak{g} \).

\(\mathcal{U} \otimes \mathcal{U} \) has an invertible element \(\mathcal{R} = \sum_{\mathcal{R}} R_1 \otimes R_2 \) that yields a map

\[
\tilde{\mathcal{R}}_{VW} : V \otimes W \longrightarrow W \otimes V
\]

that
1. satisfies braid relations, and
2. commutes with the action on \(V \otimes W \) for any \(\mathcal{U} \)-module \(V \).

The two-pole braid group shares a commuting action with \(\mathcal{U} \) on

\[
M \otimes V^\otimes k \otimes N:
\]

Around the pole:

\[
= \tilde{R}_{MV} \tilde{R}_{VM}
\]
Universal

Type B, C, D
(orthog. & sympl.)

Type A
(gen. & sp. linear)

Small Type A
(GL$_2$ & SL$_2$)

Lie grp/alg

Brauer algebra

Sym. group

Temperley-Lieb

Braid group

BMW algebra

Hecke algebra

\[\mathcal{H} = a \mathcal{H} + \mathbb{I} \]

Affine braids

Affine BMW

Affine Hecke of type A (+twists)

One-boundary TL

Affine Hecke of type C (+twists)

Two-boundary TL
<table>
<thead>
<tr>
<th>Qu. grps:</th>
<th>Lie algs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthogonal and symplectic (types B, C, D)</td>
<td>Orthogonal and symplectic (types B, C, D)</td>
</tr>
</tbody>
</table>

- **$V \otimes^k$**
 - **BMW algebra**
 - **Brauer algebra**

- **$M \otimes V \otimes^k$**
 - **Affine BMW**
 - **Deg. aff. BMW**

- **$M \otimes V \otimes^k \otimes N$**
 - **2-bdry BMW**
 - **Deg. 2-bdry BMW**

H" aring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V \otimes^k$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-Gonz´ alez-Schneider-Sutton: Constructing 2-boundary analogues (in progress).

Balagovic et al.: Signed versions and representations of periplectic Lie superalgebras.
Orthogonal and symplectic (types B, C, D)

Qu. grps: BMW algebra

Lie algs: Brauer algebra

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^\otimes k$ commuting with the action of the quantum groups of types B, C, D.
Othogonal and symplectic (types B, C, D)

Quantum groups:
- BMW algebra
- Affine BMW algebra
- 2-boundary BMW algebra

Lie algebras:
- Brauer algebra
- Degenerate affine BMW algebra
- Degenerate 2-boundary BMW algebra

H"aring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^\otimes k$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

Balagovic et al.: Signed versions and representations of periplectic Lie superalgebras.
Example: “Admissibility conditions”

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

The associated parameters of the algebra, e.g. z_0, z_1, z_2, … aren’t entirely free.

Important insight: As operators on tensor space $M \otimes V \otimes V \otimes Z \otimes U \otimes g \otimes C \otimes C$ and $\ell \otimes Z \otimes p \otimes U \otimes q \otimes g \otimes C \otimes C$.

“Higher Casimir invariants”
Example: “Admissibility conditions”

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

The associated parameters of the algebra, e.g.

\[z_0, \quad z_1, \quad z_2, \quad \ldots \]

aren’t entirely free.
Example: “Admissibility conditions”

Affine BMW algebra

Closed loops:

Degenerate affine BMW algebra

Closed loops:

The associated parameters of the algebra, e.g.

aren’t entirely free.

Important insight: As operators on tensor space $M \otimes V \otimes V$,

and

“Higher Casimir invariants”

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^\otimes k$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton: Constructing 2-boundary analogues (in progress.).
Orthogonal and symplectic (types B, C, D)

Qu. grps:

- BMW algebra
- Brauer algebra

Lie algs:

- Affine BMW
- Deg. aff. BMW
- Deg. 2-bdry BMW

Häring-Oldenburg (98) and Orellana-Ram (04): Introduced the affine BMW algebras. [OR04] gave the action on $M \otimes V^\otimes k$ commuting with the action of the quantum groups of types B, C, D.

D.-Ram-Virk: Used these centralizer relationships to study these two algebras simultaneously. Results include computing the centers, handling the parameters associated to the algebras, computing powerful intertwiner operators, etc.

D.-González-Schneider-Sutton: Constructing 2-boundary analogues (in progress.).

Balagovic et al.: Signed versions and representations of periplectic Lie superalgebras.
Universal Type B, C, D
(orthog. & sympl.)

Brauer algebra

Type A
(gen. & sp. linear)

Sym. group

Small Type A
(GL₂ & SL₂)

(orthog. & sympl.)

(General & sp. linear)

(GL₂ & SL₂)

Lie grp/alg

Brauer algebra

Sym. group

Temperley-Lieb

V = ⧲

Braid group

BMW algebra

Hecke algebra

= aH + ℐ

Affine braids

Affine BMW

Affine Hecke
of type A
(+ twists)

One-boundary TL

Affine Hecke
of type C
(+ twists)

Two-boundary TL

Two-pole braids

Two-pole BMW

Affine Hecke
of type C
(+ twists)

Two-boundary TL
Two boundary algebras (type A)
Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k:

Even # dots non-crossing diagrams

de Gier, Nichols (2008): Explored representation theory of TL_k using diagrams and established a connection to the affine Hecke algebras of type A and C.

D. (2010): The centralizer of \mathfrak{gl}_n acting on tensor space $M \otimes V \otimes N$ displays type C combinatorics for good choices of M, N, and V.
Two boundary algebras (type A)

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k:

Two-pole braids
Two-pole BMW
Affine Hecke of type C (+twists)
Two-boundary TL
Two boundary algebras (type A)

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k:

- Non-crossing diagrams
 - Even number of dots
 - k dots

de Gier, Nichols (2008): Explored representation theory of TL_k using diagrams and established a connection to the affine Hecke algebras of type A and C.
Two boundary algebras (type A)

Nienhuis, de Gier, Batchelor (2004): Studying the six-vertex model with additional integrable boundary terms, introduced the two-boundary Temperley-Lieb algebra TL_k:

![Diagram of non-crossing diagrams](image)

Non-crossing diagrams with even number of dots and k dots.

de Gier, Nichols (2008): Explored representation theory of TL_k using diagrams and established a connection to the affine Hecke algebras of type A and C.

D. (2010): The centralizer of \mathfrak{gl}_n acting on tensor space $M \otimes V^k \otimes N$ displays type C combinatorics for good choices of M, N, and V.
The two-boundary (two-pole) braid group B_k is generated by

$$T_k = \begin{array}{c}
\begin{array}{c}
\text{Diagram}
\end{array}
\end{array}, \quad T_0 = \begin{array}{c}
\begin{array}{c}
\text{Diagram}
\end{array}
\end{array} \quad \text{and} \quad T_i = \begin{array}{c}
\begin{array}{c}
\text{Diagram}
\end{array}
\end{array} \quad \text{for} \ 1 \leq i \leq k - 1,$$

subject to relations

$$T_0 T_1 T_2 \cdots T_k = T_k T_1 T_0 = 1,$$

and, similarly,

$$T_k T_1 T_k \cdots T_{k-1} = T_1 T_k T_1 = 1.$$
The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

$$T_k = \begin{array}{c}
\includegraphics{braid Tk}
\end{array}, \quad T_0 = \begin{array}{c}
\includegraphics{braid T0}
\end{array} \quad \text{and} \quad T_i = \begin{array}{c}
\includegraphics{braid Ti}
\end{array} \quad \text{for } 1 \leq i \leq k - 1,$$

subject to relations

$$T_i T_{i+1} T_i = \begin{array}{c}
\includegraphics{braid TIT}
\end{array} = \begin{array}{c}
\includegraphics{braid TTT}
\end{array} = T_{i+1} T_i T_{i+1},$$
The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

\[T_k = \begin{array}{c} \text{Diagram} \end{array}, \quad T_0 = \begin{array}{c} \text{Diagram} \end{array} \quad \text{and} \quad T_i = \begin{array}{c} \text{Diagram} \end{array} \quad \text{for } 1 \leq i \leq k - 1, \]

subject to relations

\[T_i T_{i+1} T_i = \begin{array}{c} \text{Diagram} \end{array} = \begin{array}{c} \text{Diagram} \end{array} = T_{i+1} T_i T_{i+1}, \]

\[T_1 T_0 T_1 T_0 = \begin{array}{c} \text{Diagram} \end{array} = \begin{array}{c} \text{Diagram} \end{array} = T_0 T_1 T_0 T_1, \]
The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

$$T_k = \includegraphics{boundary_braid_k}, \quad T_0 = \includegraphics{boundary_braid_0} \quad \text{and} \quad T_i = \includegraphics{boundary_braid_i} \quad \text{for} \ 1 \leq i \leq k - 1,$$

subject to relations

$$T_i T_{i+1} T_i = \includegraphics{relation_i}, \quad T_1 T_0 T_1 T_0 = \includegraphics{relation_0}, \quad \text{and, similarly,} \quad T_{k-1} T_k T_{k-1} T_k = \includegraphics{relation_k}.$$
The two-boundary (two-pole) braid group \mathcal{B}_k is generated by

\[T_k = \begin{array}{c}
\includegraphics[width=0.1\textwidth]{tk.pdf}
\end{array} \quad T_0 = \begin{array}{c}
\includegraphics[width=0.1\textwidth]{t0.pdf}
\end{array} \quad \text{and} \quad T_i = \begin{array}{c}
\includegraphics[width=0.1\textwidth]{ti.pdf}
\end{array} \quad \text{for } 1 \leq i \leq k - 1,
\]

subject to relations

\[T_0 T_1 T_2 = T_{k-2} T_{k-1} T_k \]

i.e.

\[T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \]
\[T_1 T_0 T_1 T_0 = T_0 T_1 T_0 T_1 \]

and, similarly, \(T_{k-1} T_k T_{k-1} T_k = T_k T_{k-1} T_k T_{k-1} \).
(1) The two-boundary (two-pole) braid group B_k is generated by

$$T_k = \begin{array}{c}
\includegraphics{tk}\end{array}, \quad T_0 = \begin{array}{c}
\includegraphics{t0}\end{array} \quad \text{and} \quad T_i = \begin{array}{c}
\includegraphics{ti}\end{array} \quad \text{for } 1 \leq i \leq k - 1,$$

subject to relations

$$T_0 T_1 T_2 \ldots T_{k-2} T_{k-1} T_k.$$
(1) The two-boundary (two-pole) braid group B_k is generated by

$$T_k = \begin{array}{c}
\text{\includegraphics[width=1cm]{Diagram1.png}}
\end{array}, \quad T_0 = \begin{array}{c}
\text{\includegraphics[width=1cm]{Diagram2.png}}
\end{array} \quad \text{and} \quad T_i = \begin{array}{c}
\text{\includegraphics[width=1cm]{Diagram3.png}}
\end{array} \quad \text{for} \ 1 \leq i \leq k - 1,$$

subject to relations

$$\begin{array}{c}
\text{\includegraphics[width=10cm]{Relations.png}}
\end{array}.$$

(2) Fix constants $t_0, t_k, t \in \mathbb{C}$. The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C} B_k$ by the relations

$$(T_0 - t_0^{1/2})(T_0 + t_0^{-1/2}) = 0, \quad (T_k - t_k^{1/2})(T_k + t_k^{-1/2}) = 0$$

and

$$(T_i - t^{1/2})(T_i + t^{-1/2}) = 0 \quad \text{for} \ 1 \leq t \leq k - 1.$$
(1) The two-boundary (two-pole) braid group B_k is generated by

$$T_k = \begin{array}{c}
\begin{array}{c}
\bullet \\
\end{array}
\end{array}, \quad T_0 = \begin{array}{c}
\begin{array}{c}
\bullet \\
\end{array}
\end{array} \quad \text{and} \quad T_i = \begin{array}{c}
\begin{array}{c}
\bullet \\
\end{array}
\end{array} \quad \text{for } 1 \leq i \leq k - 1,$$

subject to relations

$$\begin{array}{c}
\begin{array}{c}
\bullet \\
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\bullet \\
\end{array}
\end{array}.$$

(2) Fix constants $t_0, t_k, t = t_1 = t_2 = \cdots = t_{k-1} \in \mathbb{C}$. The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C}B_k$ by the relations $(T_i - t_i^{1/2})(T_i + t_i^{-1/2}) = 0$.
(1) The two-boundary (two-pole) braid group B_k is generated by

$T_k = \begin{array}{c}
\text{\includegraphics[scale=0.5]{braid1.png}}
\end{array}$, \hspace{1em} $T_0 = \begin{array}{c}
\text{\includegraphics[scale=0.5]{braid2.png}}
\end{array}$ \text{ and } \begin{array}{c}
T_i = \begin{array}{c}
\text{\includegraphics[scale=0.5]{braid3.png}}
\end{array} \text{ for } 1 \leq i \leq k - 1,
\end{array}$

subject to relations

$\begin{array}{c}
\text{\includegraphics[scale=0.5]{relations1.png}}
\end{array}$.

(2) Fix constants $t_0, t_k, t = t_1 = t_2 = \cdots = t_{k-1} \in \mathbb{C}$. The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C}B_k$ by the relations $(T_i - t_i^{1/2})(T_i + t_i^{-1/2}) = 0$.

(3) Set

$\begin{array}{c}
\text{\includegraphics[scale=0.5]{hecke_relations1.png}} = t_i^{1/2} \begin{array}{c}
\text{\includegraphics[scale=0.5]{hecke_relations2.png}} - \begin{array}{c}
\text{\includegraphics[scale=0.5]{hecke_relations3.png}}
\end{array}
\end{array}
\end{array}$ \hspace{1em} (e_0 = t_0^{1/2} - T_0)

$\begin{array}{c}
\text{\includegraphics[scale=0.5]{hecke_relations4.png}} = t_i^{1/2} \begin{array}{c}
\text{\includegraphics[scale=0.5]{hecke_relations5.png}} - \begin{array}{c}
\text{\includegraphics[scale=0.5]{hecke_relations6.png}}
\end{array}
\end{array}
\end{array}$ \hspace{1em} (e_k = t_k^{1/2} - T_k)

$\begin{array}{c}
\text{\includegraphics[scale=0.5]{hecke_relations7.png}} = t_i^{1/2} \begin{array}{c}
\text{\includegraphics[scale=0.5]{hecke_relations8.png}} - \begin{array}{c}
\text{\includegraphics[scale=0.5]{hecke_relations9.png}}
\end{array}
\end{array}
\end{array}$ \hspace{1em} (e_i = t_i^{1/2} - T_i)

so that $e_j^2 = z_j e_j$ (for good z_j).
(1) The two-boundary (two-pole) braid group B_k is generated by

$$T_k = \begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array}, \quad T_0 = \begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} \quad \text{and} \quad T_i = \begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} \quad \text{for } 1 \leq i \leq k - 1,$$

subject to relations

$$\begin{array}{cccccc}
T_0 & T_1 & T_2 & T_{k-2} & T_{k-1} & T_k
\end{array}.$$

(2) Fix constants $t_0, t_k, t = t_1 = t_2 = \cdots = t_{k-1} \in \mathbb{C}$. The affine type C Hecke algebra H_k is the quotient of $\mathbb{C}B_k$ by the relations $(T_i - t_i^{1/2})(T_i + t_i^{-1/2}) = 0$.

(3) Set

$$\begin{array}{c}
\begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} = t_0^{1/2} \begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} - \begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} \quad (e_0 = t_0^{1/2} - T_0)
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} = t_k^{1/2} \begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} - \begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} \quad (e_k = t_k^{1/2} - T_k)
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} = t_i^{1/2} \begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} - \begin{array}{c}
\includegraphics[width=1cm]{tikz/tikz_braid.png}
\end{array} \quad (e_i = t_i^{1/2} - T_i)
\end{array}

so that $e_j^2 = z_j e_j$ (for good z_j).

The two-boundary Temperley-Lieb algebra is the quotient of H_k by the relations $e_i e_{i+1} e_i = e_i$ for $i = 1, \ldots, k - 1$.
(1) The two-boundary (two-pole) braid group B_k is generated by

$$T_k = \begin{array}{c}
\begin{array}{c} \circ \circ \\
\circ \circ \\
\circ \circ \\
\circ \circ \\
\end{array}
\end{array}, \quad T_0 = \begin{array}{c}
\begin{array}{c} \circ \circ \\
\circ \circ \\
\circ \circ \\
\circ \circ \\
\end{array}
\end{array} \quad \text{and} \quad T_i = \begin{array}{c}
\begin{array}{c} \circ \circ \\
\circ \circ \\
\circ \circ \\
\circ \circ \\
\end{array}
\end{array} \quad \text{for } 1 \leq i \leq k - 1.$$

(2) Fix constants $t_0, t_k, t = t_1 = t_2 = \cdots = t_{k-1} \in \mathbb{C}$.

The affine type C Hecke algebra \mathcal{H}_k is the quotient of $\mathbb{C}B_k$ by the relations $(T_i - t_i^{1/2})(T_i + t_i^{-1/2}) = 0$.

(3) Set

$$= t_0^{1/2} - \begin{array}{c}
\begin{array}{c} \circ \circ \\
\circ \circ \\
\circ \circ \\
\circ \circ \\
\end{array}
\end{array}, \quad = t_k^{1/2} - \begin{array}{c}
\begin{array}{c} \circ \circ \\
\circ \circ \\
\circ \circ \\
\circ \circ \\
\end{array}
\end{array} \quad \text{and} \quad = t^{1/2} - \begin{array}{c}
\begin{array}{c} \circ \circ \\
\circ \circ \\
\circ \circ \\
\circ \circ \\
\end{array}
\end{array}$$

so that $e_j^2 = z_je_j$. The two-boundary Temperley-Lieb algebra is the quotient of \mathcal{H}_k by the relations $e_ie_{i\pm1}e_i = e_i$ for $i = 1, \ldots, k - 1$.

<table>
<thead>
<tr>
<th>Universal</th>
<th>Type B, C, D</th>
<th>Type A</th>
<th>Small Type A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(orthog. & sympl.)</td>
<td>(gen. & sp. linear)</td>
<td>(GL$_2$ & SL$_2$)</td>
<td></td>
</tr>
<tr>
<td>Two-pole braids</td>
<td>Two-pole BMW</td>
<td>Affine Hecke of type C (+twists)</td>
<td>Two-boundary TL</td>
</tr>
</tbody>
</table>
Theorem (D.-Ram)

(1) Let $U = U_q \mathfrak{g}$ for any complex reductive Lie algebras \mathfrak{g}. Let M, N, and V be finite-dimensional modules.

The two-boundary braid group B_k acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.

(2) If $\mathfrak{g} = \mathfrak{gl}_n$, then (for correct choices of M, N, and V), the affine Hecke algebra of type C, H_k, acts on $M \otimes (V)^{\otimes k} \otimes N$ and this action commutes with the action of U.

(3) If $\mathfrak{g} = \mathfrak{gl}_2$, then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of H_k.
Theorem (D.-Ram)

(1) Let $U = U_q g$ for any complex reductive Lie algebras g. Let M, N, and V be finite-dimensional modules. The two-boundary braid group B_k acts on $M \otimes (V)^\otimes k \otimes N$ and this action commutes with the action of U.

(2) If $g = gl_n$, then (for correct choices of M, N, and V), the affine Hecke algebra of type C, H_k, acts on $M \otimes (V)^\otimes k \otimes N$ and this action commutes with the action of U.

(3) If $g = gl_2$, then the action of the two-boundary Temperley-Lieb algebra factors through the T.L. quotient of H_k.

Some results:

(a) A diagrammatic intuition for H_k.

(b) A combinatorial classification and construction of irreducible representations of H_k (type C with distinct parameters) via central characters and generalizations of Young tableaux.

(c) A classification of the representations of TL_k in [dGN08] via central characters, including answers to open questions and conjectures regarding their irreducibility and isomorphism classes.
Move both poles to the left.

Jucys-Murphy elements:

Pairwise commute

Laurent polynomials in \(Z \)'s

Central characters indexed by \(c \)

modulo signed permutations
Move both poles to the left

\[M \otimes V \otimes V \otimes V \otimes V \otimes V \otimes V \otimes N \]

\[M \otimes N \otimes V \]

Jucys-Murphy elements:

Pairwise commute

\[Z_p H_k q \] is (type-C) symmetric

Laurent polynomials in \(Z_i \)’s

Central characters indexed by \(c \)

\(P_C k \) (modulo signed permutations)
Move both poles to the left

Jucys-Murphy elements:

\[Y_i = \]

Central characters indexed by \(c \) (modulo signed permutations)
Move both poles to the left

Jucys-Murphy elements:

$Y_i =$

- Pairwise commute
Move both poles to the left.

Jucys-Murphy elements:

\[Y_i = \]

- Pairwise commute
- \(Z(\mathcal{H}_k) \) is (type-C) symmetric
- Laurent polynomials in \(Z_i \)'s
Move both poles to the left

Jucys-Murphy elements:

\[Y_i = \]

- Pairwise commute
- \(\mathcal{Z}(\mathcal{H}_k) \) is (type-C) symmetric
- Laurent polynomials in \(Z_i \)'s
- Central characters indexed by \(c \in \mathbb{C}^k \) (modulo signed permutations)
The eigenvalues of the T_i’s must coincide with the eigenvalues of the corresponding R-matrices, which can be computed combinatorially.

$$0 = (T_0 - t_0)(T_0 - t_0^{-1}) = (T_k - t_k)(T_k - t_k^{-1}) = (T_i - t^{1/2})(T_i + t^{-1/2})$$

$$T_0 = \begin{array}{c} \bigotimes \alpha \check{R}_{VM} \check{R}_{MV} \end{array} \quad T_k = \begin{array}{c} \bigotimes \alpha \check{R}_{NV} \check{R}_{VN} \end{array} \quad T_i = \begin{array}{c} \bigotimes \alpha \check{R}_{VV} \end{array}$$
Back to tensor space operators properties

The eigenvalues of the T_i's must coincide with the eigenvalues of the corresponding R-matrices, which can be computed combinatorially.

$$0 = (T_0 - t_0)(T_0 - t_0^{-1}) = (T_k - t_k)(T_k - t_k^{-1}) = (T_i - t^{1/2})(T_i + t^{-1/2})$$

$$T_0 = \begin{array}{ccc}
 \times & \times & \times \\
 \times & \times & \times \\
 \end{array} \propto \tilde{R}_{VM} \tilde{R}_{MV} \quad T_k = \begin{array}{ccc}
 \times & \times & \times \\
 \times & \times & \times \\
 \end{array} \propto \tilde{R}_{NV} \tilde{R}_{VN} \quad T_i = \begin{array}{ccc}
 \times & \times & \times \\
 \times & \times & \times \\
 \end{array} \propto \tilde{R}_{VV}$$
Back to tensor space operators properties

The eigenvalues of the T_i's must coincide with the eigenvalues of the corresponding R-matrices, which can be computed combinatorially.

$$0 = (T_0 - t_0)(T_0 - t_0^{-1}) = (T_k - t_k)(T_k - t_k^{-1}) = (T_i - t^{1/2})(T_i + t^{-1/2})$$

$$T_0 = \begin{array}{ll} \alpha \tilde{R}_{VM} \tilde{R}_{MV} \\ \end{array} \quad T_k = \begin{array}{ll} \alpha \tilde{R}_{NV} \tilde{R}_{VN} \\ \end{array} \quad T_i = \begin{array}{ll} \alpha \tilde{R}_{VV} \\ \end{array}$$

$$t_0 = -q^2(a_0 + b_0)$$
$$t_k = -q^2(a_k + b_k)$$
$$t = q^2$$
Exploring $M \otimes N \otimes L(\Box)^{\otimes k}$

Products of rectangles:

$$L((a^b_0)) \otimes L((a^b_k)) = \bigoplus_{\lambda \in \Lambda} L(\lambda)$$

(multiplicity one!)

where Λ is the following set of partitions:
Exploring $\mathcal{M} \otimes \mathcal{N} \otimes L(\square)^{\otimes k}$

Products of rectangles:

$$L((a_0^{b_0})) \otimes L((a_k^{b_k})) = \bigoplus_{\lambda \in \Lambda} L(\lambda)$$

(multiplicity one!)

where Λ is the following set of partitions:
Exploring $\mathcal{M} \otimes \mathcal{N} \otimes L(\square)^{\otimes k}$

Products of rectangles:

$$L((a_0^{b_0})) \otimes L((a_k^{b_k})) = \bigoplus_{\lambda \in \Lambda} L(\lambda)$$

(multiplicity one!)

where Λ is the following set of partitions:
Exploring $M \otimes N \otimes L(\square)^\otimes k$

Products of rectangles:

$$L((a_0^{b_0})) \otimes L((a_k^{b_k})) = \bigoplus_{\lambda \in \Lambda} L(\lambda)$$

(multiplicity one!)

where Λ is the following set of partitions:
Exploring $M \otimes N \otimes L(\Box)^{\otimes k}$

Products of rectangles:

$$L((a_0^{b_0})) \otimes L((a_k^{b_k})) = \bigoplus_{\lambda \in \Lambda} L(\lambda) \quad \text{(multiplicity one!)}$$

where Λ is the following set of partitions...
Exploring $M \otimes N \otimes L(\square)^\otimes k$

\[
\begin{array}{|c|c|}
\hline
a_0 & \\ \\
\hline
b_0 & \\ \\
\hline
\end{array}
\]

$k = 0$
Exploring $M \otimes N \otimes L(\square) \otimes k$

$k = 0$

$k = 1$
Exploring $M \otimes N \otimes L(□)\otimes k$

$k = 0$

$k = 1$
Exploring $M \otimes N \otimes L(\square)^{\otimes k}$
\[
L \left(\begin{array}{c|c|c|c|c|c|c}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1 \\
3 & 4 & 5 & 1 & 2 \\
4 & 5 & 1 & 2 & 3 \\
5 & 1 & 2 & 3 & 4 \\
\end{array} \right) \otimes L \left(\begin{array}{c|c|c|c|c}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2 \\
\end{array} \right)
\]
\[L \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array} \right) \otimes L \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \otimes L \left(\begin{array}{c} 1 \end{array} \right) \]
\[L \left(\begin{array}{c} \hline \hline \hline \hline \hline \hline \end{array} \right) \right) \otimes L \left(\begin{array}{c} \hline \hline \hline \hline \end{array} \right) \otimes L \left(\square \right) \otimes L \left(\square \right) \]
\[
L \left(\begin{array}{c}
\vdots \\
\vdots \\
\ddots \\
\vdots \\
\vdots \\
\end{array} \right) \otimes L \left(\begin{array}{c}
\vdots \\
\vdots \\
\ddots \\
\vdots \\
\vdots \\
\end{array} \right) \otimes L (\square) \otimes L (\square) \otimes L (\square)
\]

(H) representations in tensor space are labeled by certain partitions \(\lambda \).

(B) Basis labeled by tableaux from some partition \(\mu \) in to \(\lambda \).

(C) Calibrated (\(Y_i \)'s are diagonalized): \(Y_i \) acts by \(t \) to the shifted diagonal number of box \(i \). (Think: signed permutations.)
\[L \left(\begin{array}{c|c|c|c|c|c|c} \hline & & & & & & \\ \hline \end{array} \right) \otimes L \left(\begin{array}{c|c|c|c} \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \right) \otimes L (\square) \]
\(L \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \end{array} \right) \right) \otimes L \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \end{array} \right) \right) \otimes L (\square) \otimes L (\square)

\((\ast)\) \(H_k\) representations in tensor space are labeled by certain partitions \(\lambda\).
$L \left(\begin{array}{c|c|c|c|c|c|c|c|c|c|c} \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline \end{array} \right) \otimes L \left(\begin{array}{c|c|c|c|c|c|c|c|c|c|c} \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline \end{array} \right) \otimes L (\square) \otimes L (\square)$

(*) H_k representations in tensor space are labeled by certain partitions λ.
\(L \left(\begin{array}{c|c|c|c|c|c|c|c|c|c}
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
\end{array} \right) \otimes L \left(\begin{array}{c|c|c|c|c|c|c|c|c|c}
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
\end{array} \right) \otimes L (\square) \)
\[L \left(\begin{array}{cccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{array} \right) \otimes L \left(\begin{array}{cccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{array} \right) \otimes L \left(\begin{array}{cccc} \square & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{array} \right) \otimes L \left(\begin{array}{cccc} \square & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{array} \right) \otimes L \left(\begin{array}{cccc} \square & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{array} \right) \otimes L \left(\begin{array}{cccc} \square & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{array} \right) \otimes L \left(\begin{array}{cccc} \square & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{array} \right) \]

(*) \(H_k \) representations in tensor space are labeled by certain partitions \(\lambda \).

(*) Basis labeled by tableaux from \textit{some} partition \(\mu \) in \((a^c) \otimes (b^d) \) to \(\lambda \).
\[L \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \\ \end{array} \right) \otimes L \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \\ \end{array} \right) \otimes L (\square) \]

\((*)\) \(H_k\) representations in tensor space are labeled by certain partitions \(\lambda\).

\((*)\) Basis labeled by tableaux from some partition \(\mu\) in \((a^c) \otimes (b^d)\) to \(\lambda\).

\((*)\) Calibrated \((Y_i)'s\ are diagonalized)
\[L \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ \end{array} \right) \times L \left(\begin{array}{cccc} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} \right) \times L \left(\begin{array}{cccc} 0 \\ \end{array} \right) \times L \left(\begin{array}{cccc} 0 \\ \end{array} \right) \]

(*): \(H_k \) representations in tensor space are labeled by certain partitions \(\lambda \).

(*): Basis labeled by tableaux from some partition \(\mu \) in \((a^c) \otimes (b^d) \) to \(\lambda \).

(*): Calibrated \((Y_i)'s\) are diagonalized.
\[
L \left(\begin{array}{cccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array} \right) \otimes L \left(\begin{array}{cc}
\vdots & \vdots \\
\vdots & \vdots \\
\end{array} \right) \otimes L \left(\begin{array}{cc}
\vdots & \vdots \\
\vdots & \vdots \\
\end{array} \right) \otimes L \left(\begin{array}{cc}
\vdots & \vdots \\
\vdots & \vdots \\
\end{array} \right) \otimes L \left(\begin{array}{cc}
\vdots & \vdots \\
\vdots & \vdots \\
\end{array} \right) \otimes L \left(\begin{array}{cc}
\vdots & \vdots \\
\vdots & \vdots \\
\end{array} \right) \otimes L \left(\begin{array}{cc}
\vdots & \vdots \\
\vdots & \vdots \\
\end{array} \right)
\]

Shift by $\frac{1}{2}(a_0 - b_0 + a_k - b_k)$

\((*)\) H_k representations in tensor space are labeled by certain partitions λ.
\((*)\) Basis labeled by tableaux from some partition μ in $(a^c) \otimes (b^d)$ to λ.
\((*)\) Calibrated (Y_i’s are diagonalized)
\[
L \left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array} \right) \otimes L \left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array} \right) \otimes L \left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array} \right) \otimes L \left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array} \right) \otimes L \left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array} \right)
\]

Shift by \(\frac{1}{2}(a_0 - b_0 + a_k - b_k) \)

\[
Y_1 \mapsto t^{5.5} \\
Y_2 \mapsto t^{3.5} \\
Y_3 \mapsto t^{-4.5} \\
Y_4 \mapsto t^{-5.5} \\
Y_5 \mapsto t^{-2.5}
\]

\[
Y_1 \mapsto t^{-5.5} \\
Y_2 \mapsto t^{2.5} \\
Y_3 \mapsto t^{4.5} \\
Y_4 \mapsto t^{3.5} \\
Y_5 \mapsto t^{5.5}
\]

\((*)\) \(H_k\) representations in tensor space are labeled by certain partitions \(\lambda\).

\((*)\) Basis labeled by tableaux from some partition \(\mu\) in \((a^c) \otimes (b^d)\) to \(\lambda\).

\((*)\) Calibrated \((Y_i's\) are diagonalized): \(Y_i\) acts by \(t\) to the shifted diagonal number of box\(_i\).

(Think: signed permutations.)
Universal Type B, C, D (orthog. & sympl.)
Type A (gen. & sp. linear)
Small Type A (GL₂ & SL₂)

- Brauer algebra
- Sym. group
- Hecke algebra
- Temperley-Lieb

- Braid group
- BMW algebra
- Affine braids
- Affine BMW
- Two-pole braids
- Two-pole BMW

- Affine Hecke of type A (+twists)
- Affine Hecke of type C (+twists)

- One-boundary TL
- Two-boundary TL

Thanks! https://zdaugherty.ccnysites.cuny.edu/