Quasisymmetric power sums

Zajj Daugherty
The City College of New York

Joint work with
Cristina Ballantine, Angela Hicks,
Sarah Mason, and Elizabeth Niese
Some combinatorics

Partitions:

\[= (5, 4, 4, 2) = \lambda \]

Compositions:

\[= (4, 2, 5, 4) = \alpha \]
Some combinatorics

Partitions:

\[
\begin{array}{c}
\begin{array}{c}
\text{Diagram}
\end{array}
\end{array}
\] = (5, 4, 4, 2) = \lambda

Compositions:

\[
\begin{array}{c}
\begin{array}{c}
\text{Diagram}
\end{array}
\end{array}
\] = (4, 2, 5, 4) = \alpha

For a composition \(\alpha\),

- let \(|\alpha|\) be the size (\# boxes) of \(\alpha\);
- let \(\ell(\alpha)\) be the length (\# parts) of \(\alpha\); and
- let \(\tilde{\alpha}\) be the rearrangement of the parts of \(\alpha\) into decreasing order.

For example, \(|\alpha| = 15\), \(\ell(\alpha) = 4\), and \(\tilde{\alpha} = \lambda\).
Some combinatorics

Partitions: $(5, 4, 4, 2) = \lambda$

Compositions: $(4, 2, 5, 4) = \alpha$

For a composition α,
- let $|\alpha|$ be the size (\# boxes) of α;
- let $\ell(\alpha)$ be the length (\# parts) of α; and
- let $\tilde{\alpha}$ be the rearrangement of the parts of α into decreasing order.

For example, $|\alpha| = 15$, $\ell(\alpha) = 4$, and $\tilde{\alpha} = \lambda$.

For compositions α and β, we say α refines β, written $\alpha \trianglelefteq \beta$, if β can be built by combining adjacent parts of α. For example,
Consider the complex polynomial ring in variables x_1, x_2, \ldots, x_n, and let S_n act by permutation of the variables. Then define

$$\text{Sym}_n = \mathbb{C}[x_1, \ldots, x_n]^{S_n}.$$
Symmetric functions

Consider the complex polynomial ring in variables x_1, x_2, \ldots, x_n, and let S_n act by permutation of the variables. Then define

$$\text{Sym}_n = \mathbb{C}[x_1, \ldots, x_n]^{S_n}.$$

This is a graded ring, with homogeneous components

$$\text{Sym}_n^k = \{\text{homogeneous } p \in \text{Sym}_n \text{ of deg. } k\}.$$
Consider the complex polynomial ring in variables x_1, x_2, \ldots, x_n, and let S_n act by permutation of the variables. Then define

$$\text{Sym}_n = \mathbb{C}[x_1, \ldots, x_n]^{S_n}.$$

This is a graded ring, with homogeneous components

$$\text{Sym}_n^k = \{\text{homogeneous } p \in \text{Sym}_n \text{ of deg. } k\}.$$

We then pass to the limit

$$\text{Sym}^k = \lim_{\leftarrow n} \text{Sym}_n^k, \quad \text{Sym} = \bigoplus_k \text{Sym}^k.$$
Symmetric functions

Consider the complex polynomial ring in variables x_1, x_2, \ldots, x_n, and let S_n act by permutation of the variables. Then define

$$\text{Sym}_n = \mathbb{C}[x_1, \ldots, x_n]^{S_n}.$$

This is a graded ring, with homogeneous components

$$\text{Sym}_n^k = \{ \text{homogeneous } p \in \text{Sym}_n \text{ of deg. } k \}.$$

We then pass to the limit

$$\text{Sym}^k = \lim_{\leftarrow n} \text{Sym}_n^k, \quad \text{Sym} = \bigoplus_k \text{Sym}^k.$$

Think: symmetric functions in $\mathbb{C}[[x_1, x_2, \ldots]]$.
Symmetric functions

Consider the complex polynomial ring in variables x_1, x_2, \ldots, x_n, and let S_n act by permutation of the variables. Then define

$$\text{Sym}_n = \mathbb{C}[x_1, \ldots, x_n]^{S_n}.$$

This is a graded ring, with homogeneous components

$$\text{Sym}_n^k = \{\text{homogeneous } p \in \text{Sym}_n \text{ of deg. } k\}.$$

We then pass to the limit

$$\text{Sym}^k = \lim_{\leftarrow n} \text{Sym}_n^k, \quad \text{Sym} = \bigoplus_k \text{Sym}^k.$$

Think: symmetric functions in $\mathbb{C}[x_1, x_2, \ldots]$.

Lots of favorite bases: Any basis of Sym can be indexed by integer partitions $\lambda \vdash n$.
Favorite bases of Sym

Monomial symmetric functions:

$$m_\lambda = \sum_{\substack{\bar{\alpha} = \lambda \\ i_1 < i_2 < \cdots < i_\ell}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}$$
Favorite bases of Sym

Monomial symmetric functions:

\[m_\lambda = \sum_{\bar{\alpha} = \lambda} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \]

Ex: \[\square = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots \]
Favorite bases of Sym

Monomial symmetric functions:

\[m_\lambda = \sum_{\widetilde{\alpha} = \lambda, \ i_1 < i_2 < \cdots < i_\ell} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \]

Ex: \[m_\square = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots \]

Homogeneous symmetric functions:

\[h_r = \sum_{|\alpha| = r, \ i_1 < i_2 < \cdots < i_\ell} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \]

\[h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots. \]
Favorite bases of Sym

Monomial symmetric functions:

\[m_\lambda = \sum_{\substack{\alpha \vdash \lambda \\text{s.t.} \\alpha_1 < \alpha_2 < \cdots < \alpha_\ell \\text{and} \\alpha_1 > 0}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \]

Ex: \(m_{\square} = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots \)

Homogeneous symmetric functions:

\[h_r = \sum_{\substack{\alpha \vdash r \\text{s.t.} \\alpha_1 + \alpha_2 + \cdots + \alpha_\ell = r \\text{and} \\alpha_1 > 0}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell} \]

\[h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots \]

Example:

\[h_2 = x_1^2 + x_2^2 + \cdots + x_1 x_2 + x_1 x_3 + \cdots \]
Favorite bases of Sym

Monomial symmetric functions:

\[m_\lambda = \sum_{\alpha = \lambda}^{\alpha_1 < \alpha_2 < \cdots < \alpha_\ell} x^{\alpha_1}_{i_1} x^{\alpha_2}_{i_2} \cdots x^{\alpha_\ell}_{i_\ell}, \]

Example: \[m_\square = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots \]

Homogeneous symmetric functions:

\[h_r = \sum_{|\alpha| = r}^{\alpha_1 < \alpha_2 < \cdots < \alpha_\ell} x^{\alpha_1}_{i_1} x^{\alpha_2}_{i_2} \cdots x^{\alpha_\ell}_{i_\ell} \]

Example:

\[h_2 = x_1^2 + x_2^2 + \cdots + x_1 x_2 + x_1 x_3 + \cdots \]

\[h_\square = h_2 h_1 \]
Favorite bases of Sym

Monomial symmetric functions:

\[m_\lambda = \sum_{\substack{\alpha = \lambda \atop i_1 < i_2 < \cdots < i_\ell}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \]

Ex: \(m_\square = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots \)

Homogeneous symmetric functions:

\[h_r = \sum_{\substack{\alpha \atop |\alpha| = r \atop i_1 < i_2 < \cdots < i_\ell}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell} = \sum_{|\lambda| = r} m_\lambda, \]

\[h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots. \]

Example:

\[h_2 = x_1^2 + x_2^2 + \cdots + x_1 x_2 + x_1 x_3 + \cdots \]

\[h_\square = h_2 h_1 \]
Favorite bases of Sym

Monomial symmetric functions:

$$m_\lambda = \sum_{\substack{\bar{\alpha} = \lambda \\ i_1 < i_2 < \cdots < i_\ell}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \quad \text{Ex: } m_\square = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots$$

Homogeneous symmetric functions:

$$h_r = \sum_{\substack{\alpha \vdash |\alpha| = r \\ i_1 < i_2 < \cdots < i_\ell}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell} = \sum_{|\lambda| = r} m_\lambda, \quad h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots .$$

Example:

$$h_2 = x_1^2 + x_2^2 + \cdots + x_1 x_2 + x_1 x_3 + \cdots = m_\square + m_\square, \quad h_\square = h_2 h_1$$
Favorite bases of Sym

Monomial symmetric functions:

\[m_\lambda = \sum_{\alpha=\lambda, \ i_1<i_2<\cdots<i_\ell} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \]

Ex: \(m_{\begin{array}{c} 1 \\ 2 \\ 3 \end{array}} = x_1^2 x_2 + x_2^2 x_1 + x_3^2 x_1 + \cdots \)

Homogeneous symmetric functions:

\[h_r = \sum_{|\alpha|=r} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell} = \sum_{|\lambda|=r} m_\lambda, \quad h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots. \]

Example:

\[h_2 = x_1^2 + x_2^2 + \cdots + x_1 x_2 + x_1 x_3 + \cdots = m_{\begin{array}{c} 1 \\ 2 \end{array}} + m_{\begin{array}{c} 1 \\ 3 \end{array}}, \]

\[h_{\begin{array}{c} 1 \\ 2 \end{array}} = h_2 h_1 = (m_{\begin{array}{c} 1 \\ 2 \end{array}} + m_{\begin{array}{c} 1 \\ 3 \end{array}}) m_{\begin{array}{c} 1 \end{array}} = 2m_{\begin{array}{c} 1 \\ 2 \\ 3 \end{array}} + m_{\begin{array}{c} 1 \\ 3 \\ 4 \end{array}} + m_{\begin{array}{c} 2 \\ 3 \\ 4 \end{array}}. \]
Favorite bases of Sym

Monomial symmetric functions:

\[m_\lambda = \sum_{\substack{\tilde{\alpha} = \lambda \\ i_1 < i_2 < \cdots < i_\ell}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \quad \text{Ex: } m_{\square} = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots \]

Homogeneous symmetric functions:

\[h_r = \sum_{\substack{\alpha = r \\ i_1 < i_2 < \cdots < i_\ell}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell} = \sum_{|\lambda| = r} m_\lambda, \quad h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots . \]

Example:

\[h_2 = x_1^2 + x_2^2 + \cdots + x_1 x_2 + x_1 x_3 + \cdots = m_{\square} + m_{\square}, \]

\[h_{\square} = h_2 h_1 = (m_{\square} + m_{\square}) m_{\square} = 2m_{\square} + m_{\square \square} + m_{\square \square \square}. \]

Scalar product: \(\langle , \rangle : \text{Sym} \otimes \text{Sym} \rightarrow \mathbb{C} \) defined by

\[\langle h_\lambda, m_\mu \rangle = \delta_{\lambda,\mu}, \]

so that the homogeneous and monomial functions are dual.
Favorite bases of Sym

Elementary symmetric functions:

\[e_r = \sum_{1 \leq i_1 < i_2 < \cdots < i_r} x_{i_1} \cdots x_{i_r} = m_{(1,1,\ldots,1)} \]

\[e_\lambda = e_{\lambda_1} e_{\lambda_2} \cdots \]
Favorite bases of Sym

Elementary symmetric functions:

$$e_r = \sum_{1 \leq i_1 < i_2 < \cdots < i_r} x_{i_1} \cdots x_{i_r} = m_{(1,1,\ldots,1)} \quad e_\lambda = e_\lambda_1 e_\lambda_2 \cdots .$$

For example,

$$e_2 = x_1 x_2 + x_1 x_3 + \cdots = m_{\square},$$

$$e_{\square} = e_2 e_1$$
Favorite bases of Sym

Elementary symmetric functions:

\[e_r = \sum_{1 \leq i_1 < i_2 < \cdots < i_r} x_{i_1} \cdots x_{i_r} = m_{(1,1,\ldots,1)} \quad e_\lambda = e_{\lambda_1}e_{\lambda_2} \cdots . \]

For example,

\[e_2 = x_1x_2 + x_1x_3 + \cdots = m_3, \]

\[e_{\boxed{2}} = e_2 e_1 = m_{\boxed{2}} m_{\boxed{1}} = m_{\boxed{3}} + m_{\boxed{1}}. \]
Favorite bases of \(\text{Sym} \)

Elementary symmetric functions:

\[
e_r = \sum_{1 \leq i_1 < i_2 < \cdots < i_r} x_{i_1} \cdots x_{i_r} = m_{(1,1,\ldots,1)} \quad e_\lambda = e_{\lambda_1} e_{\lambda_2} \cdots.
\]

For example,

\[
e_2 = x_1 x_2 + x_1 x_3 + \cdots = m_{-},
\]

\[
e_{-} = e_2 e_1 = m_{-} m_{-} = m_{-} + m_{-}.
\]

Schur functions:

\[
s_\lambda \sum_{\text{ss tabl. } T \text{ of shape } \lambda} x^\text{wt}(T) = \sum_{\mu} K_{\lambda\mu} m_{\mu},
\]

where the coefficients \(K_{\lambda\mu} \) are the Kostka numbers.
Favorite bases of Sym

Elementary symmetric functions:

\[e_r = \sum_{1 \leq i_1 < i_2 < \ldots < i_r} x_{i_1} \cdots x_{i_r} = m_{(1,1,\ldots,1)} \quad e_\lambda = e_{\lambda_1} e_{\lambda_2} \cdots . \]

For example,

\[e_2 = x_1 x_2 + x_1 x_3 + \cdots = m_{\square}, \]

\[e_{\square} = e_2 e_1 = m_{\square} m_{\square} = m_{\square} + m_{\square}. \]

Schur functions:

\[s_\lambda = \sum_{\text{ss tabl. } T \text{ of shape } \lambda} x^{\text{wt}(T)} = \sum_{\mu} K_{\lambda \mu} m_\mu, \]

where the coefficients \(K_{\lambda \mu} \) are the Kostka numbers.

Note

\[\langle s_\lambda, s_\mu \rangle = \delta_{\lambda,\mu} \quad \text{and} \quad \langle e_\lambda, \omega(m_\mu) \rangle = \delta_{\lambda,\mu} \]

where \(\omega \) is the involution on Sym sending \(e_\lambda \to h_\lambda \).
Favorite bases of Sym

Power sum symmetric functions:

\[p_r = x_1^r + x_2^r + \cdots \quad \text{and} \quad p_\lambda = p_{\lambda_1} p_{\lambda_2} \cdots . \]
Favorite bases of Sym

Power sum symmetric functions:

\[p_r = x_1^r + x_2^r + \cdots \quad \quad \quad p_\lambda = p_{\lambda_1} p_{\lambda_2} \cdots . \]

For example,

\[p_2 = x_1^2 + x_2^2 + \cdots \]

\[p_{\square} = p_2 p_1 \]
Favorite bases of Sym

Power sum symmetric functions:

\[p_r = x_1^r + x_2^r + \cdots = m(r), \quad p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots. \]

For example,

\[p_2 = x_1^2 + x_2^2 + \cdots \]

\[p_{\square} = p_2 p_1 \]
Favorite bases of Sym

Power sum symmetric functions:

$$p_r = x_1^r + x_2^r + \cdots = m(r), \quad p_\lambda = p_{\lambda_1}p_{\lambda_2} \cdots .$$

For example,

$$p_2 = x_1^2 + x_2^2 + \cdots = m_{\square},$$

$$p_{\square} = p_2p_1$$
Favorite bases of Sym

Power sum symmetric functions:

\[p_r = x_1^r + x_2^r + \cdots = m(r), \quad p_\lambda = p_{\lambda_1} p_{\lambda_2} \cdots . \]

For example,

\[p_2 = x_1^2 + x_2^2 + \cdots = m_{\square}, \]

\[p_{\square} = p_2 p_1 = m_{\square} m_{\square}. \]
Favorite bases of Sym

Power sum symmetric functions:

\[p_r = x_1^r + x_2^r + \cdots = m(r), \quad p_\lambda = p_{\lambda_1} p_{\lambda_2} \cdots. \]

For example,

\[p_2 = x_1^2 + x_2^2 + \cdots = m\square, \]

\[p_{\square\square} = p_2 p_1 = m\square m\square = m\boxed{\square} + m\boxed{\square\square}. \]
Favorite bases of Sym

Power sum symmetric functions:

\[p_r = x_1^r + x_2^r + \cdots = m(r), \quad p_\lambda = p_{\lambda_1} p_{\lambda_2} \cdots . \]

For example,

\[p_2 = x_1^2 + x_2^2 + \cdots = m_{\square}, \]

\[p_{\square} = p_2 p_1 = m_{\square} m_{\square} = m_{\square} + m_{\square \square}. \]

We have

\[\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda \mu} \]

where \(z_\lambda \) is the size of the stabilizer of a permutation of cycle type \(\lambda \):

\[z_\lambda = \prod_k a_k! k^{a_k}, \quad a_k = \# \{ \text{pts of length } k \} \]
Favorite bases of Sym

Power sum symmetric functions:

$$p_r = x_1^r + x_2^r + \cdots = m(r), \quad p_\lambda = p_{\lambda_1} p_{\lambda_2} \cdots .$$

For example,

$$p_2 = x_1^2 + x_2^2 + \cdots = m_{\square},$$

$$p_{\square} = p_2 p_1 = m_{\square} m_{\square} = m_{\square} + m_{\square \square}.$$

We have

$$\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda\mu}$$

where z_λ is the size of the stabilizer of a permutation of cycle type λ:

$$z_\lambda = \prod_k a_k! k^{a_k}, \quad a_k = \# \{ \text{pts of length } k \} \quad \text{Ex: } z_{\square \square \square} = 2! \ 3^2.$$
Generating functions

\[H(t) = \sum_{k \geq 0} h_k t^k = \prod_{i \geq 1} (1 - x_i t)^{-1} \]

\[E(t) = \sum_{k \geq 0} e_k t^k = \prod_{i \geq 1} (1 + x_i t) \]
Generating functions

\[H(t) = \sum_{k \geq 0} h_k t^k = \prod_{i \geq 1} (1 - x_i t)^{-1} \]

\[E(t) = \sum_{k \geq 0} e_k t^k = \prod_{i \geq 1} (1 + x_i t) \]

Note \(H(t) = 1/E(-t) \).
Generating functions

\[H(t) = \sum_{k \geq 0} h_k t^k = \prod_{i \geq 1} (1 - x_i t)^{-1} \]

\[E(t) = \sum_{k \geq 0} e_k t^k = \prod_{i \geq 1} (1 + x_i t) \]

Note \(H(t) = 1/E(-t). \)

\[P(t) = \sum_{k \geq 0} p_k t^k = \frac{d}{dt} \ln(H(t)) = \frac{d}{dt} \ln(1/E(-t)) \]
Variations on Sym

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.
Variations on Sym

The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.

Think: The elementary symmetric functions e_1, e_2, \ldots generate Sym, and, aside from commuting, are algebraically independent. Now, we’re lifting to an algebra where the elementary functions no longer commute. So the abelianization

$$Ab : \text{NSym} \to \text{Sym}$$

is surjective (with kernel generated by commutators).
The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.

Analogous bases indexed by compositions α.

NSym
The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.

Analogous bases indexed by compositions α.

- Noncom. elementary: $e_{\alpha} = e_{\alpha_1} \cdots e_{\alpha_\ell}$.
The ring of noncommutative symmetric functions \(\text{NSym} \) is the \(\mathbb{C} \)-algebra generated by the free group on \(e_1, e_2, \ldots \).

Analogous bases indexed by compositions \(\alpha \).

- Noncom. elementary: \(e_\alpha = e_{\alpha_1} \cdots e_{\alpha_\ell} \).

\[Ab(e_\alpha) = e_{\tilde{\alpha}} \]
The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.

Analogous bases indexed by compositions α.

- Noncom. elementary: $e_\alpha = e_{\alpha_1} \cdots e_{\alpha_\ell}$. \hspace{1cm} $\text{Ab}(e_\alpha) = e_{\tilde{\alpha}}$

- Noncom. homog.: $h_\alpha = h_{\alpha_1} \cdots h_{\alpha_\ell}$, where h_i is defined by . . .

\[
\text{if} \quad E(t) = \sum_{k \geq 0} e_k t^k \quad \text{and} \quad H(t) = \sum_{k \geq 0} h_k t^k,
\]

\[
\text{then} \quad H(t) = 1/E(-t). \quad \text{(Recall: } H(t) = 1/E(-t) \text{ in } \text{Sym}).
\]
The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.

Analogous bases indexed by compositions α.

- Noncom. elementary: $e_\alpha = e_{\alpha_1} \cdots e_{\alpha_\ell}$.
 $Ab(e_\alpha) = e_{\bar{\alpha}}$

- Noncom. homog.: $h_\alpha = h_{\alpha_1} \cdots h_{\alpha_\ell}$, where h_i is defined by...

 \[
 \text{if } E(t) = \sum_{k \geq 0} e_k t^k \text{ and } H(t) = \sum_{k \geq 0} h_k t^k, \\
 \text{then } H(t) = 1/E(-t). \quad \text{(Recall: } H(t) = 1/E(-t) \text{ in Sym).}
 \]

 $Ab(h_\alpha) = h_{\bar{\alpha}}$
The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.

Analogous bases indexed by compositions α.

- Noncom. elementary: $e_\alpha = e_{\alpha_1} \cdots e_{\alpha_\ell}$.
 \[Ab(e_\alpha) = e_{\tilde{\alpha}} \]

- Noncom. homog.: $h_\alpha = h_{\alpha_1} \cdots h_{\alpha_\ell}$, where h_i is defined by...

\[
\text{if } E(t) = \sum_{k \geq 0} e_k t^k \quad \text{and} \quad H(t) = \sum_{k \geq 0} h_k t^k, \\
\text{then } H(t) = 1/E(-t). \quad \text{(Recall: } H(t) = 1/E(-t) \text{ in } \text{Sym}). \\
\quad Ab(h_\alpha) = h_{\tilde{\alpha}}
\]

- Noncom. power sums: two choices, ψ and ϕ!
The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.

Analogous bases indexed by compositions α.

- **Noncom. elementary:** $e_\alpha = e_{\alpha_1} \cdots e_{\alpha_\ell}$.
 \[\text{Ab}(e_\alpha) = e_{\tilde{\alpha}} \]

- **Noncom. homog.** $h_\alpha = h_{\alpha_1} \cdots h_{\alpha_\ell}$, where h_i is defined by...

\[
\text{if} \quad E(t) = \sum_{k \geq 0} e_k t^k \quad \text{and} \quad H(t) = \sum_{k \geq 0} h_k t^k,
\]

then $H(t) = 1/E(-t)$. (Recall: $H(t) = 1/E(-t)$ in Sym).

\[\text{Ab}(h_\alpha) = h_{\tilde{\alpha}} \]

- **Noncom. power sums:** two choices, ψ and ϕ!

\[
\begin{align*}
\text{In Sym:} & \quad P(t) = \frac{d}{dt} \ln(H(t)) \quad \frac{d}{dt} H(t) = H(t) \Psi(t) \\
\text{In NSym:} & \quad \text{Type 1:} \quad P(t) = \frac{d}{dt} \ln(H(t)) \quad \frac{d}{dt} H(t) = H(t) \Psi(t)
\end{align*}
\]
The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.

Analogous bases indexed by compositions α.

- Noncom. elementary: $e_\alpha = e_{\alpha_1} \cdots e_{\alpha_\ell}$.
 \[\mathcal{A}b(e_\alpha) = e_{\tilde{\alpha}} \]

- Noncom. homog.: $h_\alpha = h_{\alpha_1} \cdots h_{\alpha_\ell}$, where h_i is defined by...

 \[
 \text{if } E(t) = \sum_{k \geq 0} e_k t^k \quad \text{and} \quad H(t) = \sum_{k \geq 0} h_k t^k, \\
 \text{then } H(t) = 1/E(-t). \quad \text{(Recall: } H(t) = 1/E(-t) \text{ in } \text{Sym}). \\
 \mathcal{A}b(h_\alpha) = h_{\tilde{\alpha}}
 \]

- Noncom. power sums: two choices, ψ and ϕ!

 \[
 \text{In } \text{Sym}: \\
 \text{Type 1: } P(t) = \frac{d}{dt} \ln(H(t)) \quad \frac{d}{dt}H(t) = H(t) \Psi(t) \\
 \text{Type 2: } H(t) = \exp \left(\int P(t) dt \right) \quad H(t) = \exp \left(\int \Phi(t) dt \right)
 \]
The ring of noncommutative symmetric functions NSym is the \mathbb{C}-algebra generated by the free group on e_1, e_2, \ldots.

Analogous bases indexed by compositions α.

- Noncom. elementary: $e_\alpha = e_{\alpha_1} \cdots e_{\alpha_\ell}$. $Ab(e_\alpha) = e_{\tilde{\alpha}}$

- Noncom. homog.: $h_\alpha = h_{\alpha_1} \cdots h_{\alpha_\ell}$, where h_i is defined by...

\[
\text{if } E(t) = \sum_{k \geq 0} e_k t^k \quad \text{and} \quad H(t) = \sum_{k \geq 0} h_k t^k,
\]

then $H(t) = 1/E(-t)$. (Recall: $H(t) = 1/E(-t)$ in Sym).

$Ab(h_\alpha) = h_{\tilde{\alpha}}$

- Noncom. power sums: two choices, ψ and ϕ!

In Sym:

Type 1: $P(t) = \frac{d}{dt} \ln(H(t))$ \quad $\frac{d}{dt}H(t) = H(t)\Psi(t)$

Type 2: $H(t) = \exp \left(\int P(t) dt \right)$ \quad $H(t) = \exp \left(\int \Phi(t) dt \right)$

Not the same! (No unique notion of log derivative for power series with noncommutative coefficients.) But

$Ab(\psi_\alpha) = p_{\tilde{\alpha}} = Ab(\phi_\alpha)$
Variations on Sym

The ring of quasisymmetric functions \mathbb{QSym} is a subring of $\mathbb{C}[x_1, x_2, \ldots]$ consisting of series where the coefficients on the monomials

$$x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_\ell^{\alpha_\ell} \quad \text{and} \quad x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}$$

are the same, for all $i_1 < i_2 < \cdots < i_\ell$.

Variations on Sym

The ring of quasisymmetric functions $QSym$ is a subring of $\mathbb{C}[x_1, x_2, \ldots]$ consisting of series where the coefficients on the monomials

$$x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_\ell^{\alpha_\ell} \quad \text{and} \quad x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}$$

are the same, for all $i_1 < i_2 < \cdots < i_\ell$. In particular, $\text{Sym} \subset QSym$.
Variations on Sym

The ring of quasisymmetric functions \mathcal{QSym} is a subring of $\mathbb{C}[x_1, x_2, \ldots]$ consisting of series where the coefficients on the monomials

$$x_1^{\alpha_1}x_2^{\alpha_2} \cdots x_\ell^{\alpha_\ell} \quad \text{and} \quad x_{i_1}^{\alpha_1}x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}$$

are the same, for all $i_1 < i_2 < \cdots < i_\ell$. In particular, $\text{Sym} \subset \mathcal{QSym}$.

For example,

$$\sum_{i<j} x_ix_j^2 = x_1x_2^2 + x_1x_3^2 + x_2x_3^2 + \cdots$$

is quasisymmetric but not symmetric (the coef. on $x_1^2x_2$ is 0).
Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C}[x_1, x_2, \ldots]$ consisting of series where the coefficients on the monomials

$$x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_\ell^{\alpha_\ell} \quad \text{and} \quad x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}$$

are the same, for all $i_1 < i_2 < \cdots < i_\ell$. In particular, $\text{Sym} \subset \text{QSym}$.

For example,

$$\sum_{i<j} x_i x_j^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \cdots$$

is quasisymmetric but not symmetric (the coef. on $x_1^2 x_2$ is 0).

Bases of QSym are also indexed by compositions.
Variations on Sym

The ring of quasisymmetric functions \mathbb{QSym} is a subring of $\mathbb{C}[x_1, x_2, \ldots]$ consisting of series where the coefficients on the monomials

$$x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_{\ell}^{\alpha_{\ell}} \quad \text{and} \quad x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_{\ell}}^{\alpha_{\ell}}$$

are the same, for all $i_1 < i_2 < \cdots < i_{\ell}$. In particular, $\text{Sym} \subset \mathbb{QSym}$.

For example,

$$\sum_{i < j} x_i x_j^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \cdots$$

is quasisymmetric but not symmetric (the coef. on $x_1^2 x_2$ is 0).

Bases of \mathbb{QSym} are also indexed by compositions. Namely, the monomial basis has a natural analog:

$$M_\alpha = \sum_{i_1 < i_2 < \cdots < i_{\ell(\alpha)}} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_{\ell}}^{\alpha_{\ell}}, \quad \text{so that} \quad m_\lambda = \sum_{\tilde{\alpha}=\lambda} M_{\tilde{\alpha}}.$$
Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C}[x_1, x_2, \ldots]$ consisting of series where the coefficients on the monomials
\[x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_\ell^{\alpha_\ell} \quad \text{and} \quad x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell} \]
are the same, for all $i_1 < i_2 < \cdots < i_\ell$. In particular, $\text{Sym} \subset \text{QSym}$.

For example,
\[\sum_{i<j} x_i x_j^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \cdots = M_{\square} \]
is quasisymmetric but not symmetric (the coeff. on $x_1^2 x_2$ is 0).

Bases of QSym are also indexed by compositions. Namely, the monomial basis has a natural analog:
\[M_\alpha = \sum_{i_1<i_2<\cdots<i_\ell(\alpha)} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \quad \text{so that} \quad m_\lambda = \sum_{\tilde{\alpha}=\lambda} M_\alpha. \]
Variations on Sym

The ring of quasisymmetric functions QSym is a subring of $\mathbb{C}[x_1, x_2, \ldots]$ consisting of series where the coefficients on the monomials $x_1^{\alpha_1}x_2^{\alpha_2} \cdots x_\ell^{\alpha_\ell}$ and $x_{i_1}^{\alpha_1}x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}$ are the same, for all $i_1 < i_2 < \cdots < i_\ell$. In particular, $\text{Sym} \subset \text{QSym}$.

For example,

$$\sum_{i<j} x_i x_j^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + \cdots = M_{\square \square}$$

is quasisymmetric but not symmetric (the coef. on $x_1^2 x_2$ is 0).

Bases of QSym are also indexed by compositions. Namely, the monomial basis has a natural analog:

$$M_\alpha = \sum_{i_1<i_2<\cdots<i_\ell(\alpha)} x_{i_1}^{\alpha_1}x_{i_2}^{\alpha_2} \cdots x_{i_\ell}^{\alpha_\ell}, \quad \text{so that} \quad m_\lambda = \sum_{\tilde{\alpha}=\lambda} M_\alpha.$$

Extending linearly gives a natural surjective map $\text{QSym} \to \text{Sym}$.
Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are dual as Hopf algebras, meaning there is a natural pairing
\[\langle \cdot, \cdot \rangle : \text{NSym} \otimes \text{QSym} \to \mathbb{C}. \]
Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are dual as Hopf algebras, meaning there is a natural pairing

\[\langle , \rangle : \text{NSym} \otimes \text{QSym} \to \mathbb{C}. \]

Moreover, the duality is analogous to the pairing in Sym; namely

\[\langle h_\lambda, m_\mu \rangle = \delta_{\lambda, \mu} \quad \text{in Sym} \otimes \text{Sym} \]
\[\langle h_\alpha, M_\beta \rangle = \delta_{\alpha, \beta} \quad \text{in NSym} \otimes \text{QSym}. \]
Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are *dual* as Hopf algebras, meaning there is a natural pairing

$$\langle \cdot \rangle : \text{NSym} \otimes \text{QSym} \to \mathbb{C}.$$

Moreover, the duality is analogous to the pairing in Sym; namely

$$\langle h_\lambda, m_\mu \rangle = \delta_{\lambda, \mu} \quad \text{in Sym} \otimes \text{Sym}$$

$$\langle h_\alpha, M_\beta \rangle = \delta_{\alpha, \beta} \quad \text{in NSym} \otimes \text{QSym}.$$

The dual to the elementary basis in NSym is the so-called *forgotten basis* of QSym. There are several notions of the analog to the Schur basis in NSym and QSym, paired by duality.
Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are dual as Hopf algebras, meaning there is a natural pairing

\[\langle \cdot, \cdot \rangle : \text{NSym} \otimes \text{QSym} \to \mathbb{C}. \]

Moreover, the duality is analogous to the pairing in Sym; namely

\[\langle h_\lambda, m_\mu \rangle = \delta_{\lambda,\mu} \quad \text{in Sym} \otimes \text{Sym} \]
\[\langle h_\alpha, M_\beta \rangle = \delta_{\alpha,\beta} \quad \text{in NSym} \otimes \text{QSym}. \]

The dual to the elementary basis in NSym is the so-called forgotten basis of QSym. There are several notions of the analog to the Schur basis in NSym and QSym, paired by duality.

Also, in Sym the power sum basis is (essentially) self-dual:

\[\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda,\mu} \]
Dual Hopf algebras

Both NSym and QSym have Hopf algebra structures. In particular, they are *dual* as Hopf algebras, meaning there is a natural pairing

\[\langle , \rangle : \text{NSym} \otimes \text{QSym} \to \mathbb{C}. \]

Moreover, the duality is analogous to the pairing in \(\text{Sym} \); namely

\[\langle h_\lambda, m_\mu \rangle = \delta_\lambda,\mu \quad \text{in} \ \text{Sym} \otimes \text{Sym} \]

\[\langle h_\alpha, M_\beta \rangle = \delta_\alpha,\beta \quad \text{in} \ \text{NSym} \otimes \text{QSym}. \]

The dual to the elementary basis in \(\text{NSym} \) is the so-called *forgotten basis* of \(\text{QSym} \). There are several notions of the analog to the Schur basis in \(\text{NSym} \) and \(\text{QSym} \), paired by duality.

Also, in \(\text{Sym} \) the power sum basis is (essentially) self-dual:

\[\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_\lambda,\mu \]

Question: What is dual to \(\psi \)? to \(\phi \)?
In Sym the power sum basis is (essentially) self-dual:

$$\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda\mu}$$
Type 1

In Sym the power sum basis is (essentially) self-dual:

$$\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda \mu}$$

In NSym, the type 1 power sum basis is defined by the generating function relation

$$\frac{d}{dt} H(t) = H(t) \Psi(t).$$
Type 1

In Sym the power sum basis is (essentially) self-dual:

$$\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda\mu}$$

In NSym, the type 1 power sum basis is defined by the generating function relation

$$\frac{d}{dt} H(t) = H(t) \Psi(t).$$

This is equivalent to

$$h_\alpha = \sum_{\beta \preceq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_\beta,$$

where $\pi(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preceq \alpha$.
Type 1

In \textit{Sym} the power sum basis is (essentially) self-dual:

\[\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda\mu} \]

In \textit{NSym}, the **type 1 power sum basis** is defined by the generating function relation

\[\frac{d}{dt} H(t) = H(t) \Psi(t). \]

This is equivalent to

\[h_\alpha = \sum_{\beta \preceq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_\beta, \]

where \(\pi(\beta, \alpha) \) is a combinatorial statistic on the refinement \(\beta \preceq \alpha \). So, the dual in \textit{QSym} will satisfy

\[\psi_\alpha^* = \sum_{\beta \succeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_\beta. \]
Type 1

In \text{Sym} the power sum basis is (essentially) self-dual:

\[\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \delta_{\lambda \mu} \]

In \text{NSym}, the type 1 power sum basis is defined by the generating function relation

\[
\frac{d}{dt} H(t) = H(t) \Psi(t).
\]

This is equivalent to

\[
h_{\alpha} = \sum_{\beta \preceq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_{\beta},
\]

where \(\pi(\beta, \alpha) \) is a combinatorial statistic on the refinement \(\beta \preceq \alpha \).

So, the dual in \text{QSym} will satisfy

\[
\psi_{\alpha}^* = \sum_{\beta \succeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_{\beta}.
\]

Define

\[
\Psi_{\alpha} = z_{\alpha} \psi_{\alpha}^*, \quad \text{so that} \quad \langle \psi_{\alpha}, \Psi_{\beta} \rangle = z_{\alpha} \delta_{\alpha \beta}.
\]
Computing coefficients

\[\Psi_\alpha = z\tilde{\alpha} \sum_{\beta \succeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_\beta. \]
Computing coefficients

\[\Psi_\alpha = z^\alpha \sum_{\beta \geq \alpha} \frac{1}{\pi(\alpha, \beta)} M_\beta. \]

For example, we saw that

\begin{align*}
\pi & = \begin{bmatrix}
1 & 3 & 4
\end{bmatrix} \\
\pi_{\alpha, \beta} & = \begin{bmatrix}
1 & 3 & 4
\end{bmatrix} \\
\pi_{\alpha, \beta} & = \begin{bmatrix}
1 & 3 & 4
\end{bmatrix} \\
\pi_{\alpha, \beta} & = \begin{bmatrix}
1 & 3 & 4
\end{bmatrix}
\end{align*}

refines

\begin{align*}
\text{refines}
\end{align*}
Computing coefficients

\[\Psi_\alpha = z\tilde{\alpha} \sum_{\beta \succeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_\beta. \]

For example, we saw that

First, for each block, we compute the product of the partial sums:

\[
\pi \left(\begin{array}{c}
\text{refines}
\end{array} \right) = \left| \begin{array}{c}
\end{array} \right| \cdot \left| \begin{array}{c}
\end{array} \right| \cdot \left| \begin{array}{c}
\end{array} \right| = 1 \cdot 3 \cdot 4
\]
Computing coefficients

\[\Psi_\alpha = z_\alpha \sum_{\beta \supseteq \alpha} \frac{1}{\pi(\alpha, \beta)} M_\beta. \]

For example, we saw that

First, for each block, we compute the product of the partial sums:

\[\pi \left(\begin{array} \hline \hline \end{array} \right) = \left| \begin{array} \hline \hline \end{array} \right| \cdot \left| \begin{array} \hline \hline \end{array} \right| \cdot \left| \begin{array} \hline \hline \end{array} \right| = 1 \cdot 3 \cdot 4 \]

Then, for \(\alpha \) refining \(\beta \), the coefficient of \(M_\beta \) in \(\psi_\alpha^* \) is \(1/\pi(\alpha, \beta) \), where

\[\pi \left(\begin{array} \hline \hline \end{array} \right) = \pi \left(\begin{array} \hline \hline \end{array} \right) = (1 \cdot 3 \cdot 4)(2)(5)(1 \cdot 2 \cdot 4) \]
Computing coefficients

First, for each block, we compute the product of the partial sums:

\[\pi \left(\begin{array} \hline \hline \end{array} \right) = \left| \begin{array} \hline \end{array} \right| \cdot \left| \begin{array} \hline \end{array} \right| \cdot \left| \begin{array} \hline \end{array} \right| = 1 \cdot 2 \cdot 3 \cdot 4\]

Then, for \(\alpha \) refining \(\beta \), the coefficient of \(M_\beta \) in \(\psi_\alpha^* \) is \(\frac{1}{\pi(\alpha, \beta)} \), where

\[\pi \left(\begin{array} \hline \hline \end{array} \right) = \pi \left(\begin{array} \hline \end{array} \right) \]

As another example, \(z = 2 \),

\[\Psi = z \psi^* = 2 \left(\frac{1}{2} M + \frac{1}{3} M \right)\]

\[\Psi = z \psi^* = 2 \left(\frac{1}{2} M + \frac{1}{6} M \right)\]
Computing coefficients

First, for each block, we compute the product of the partial sums:

\[\pi \left(\begin{array}{c} \text{block} \end{array} \right) = 1 \cdot 3 \cdot 4 \]

Then, for \(\alpha \) refining \(\beta \), the coefficient of \(M_\beta \) in \(\psi_\alpha^* \) is \(1/\pi(\alpha, \beta) \), where

\[\pi \left(\begin{array}{c} \text{block} \end{array} \right) = \pi \left(\begin{array}{c} \text{block} \end{array} \right) \]

As another example, \(z_\square = 2 \),

\[\Psi_\square = 2 \left(\frac{1}{2} M_\square + \frac{1}{3} M_\square \right) \]

\[\Psi_\square = 2 \left(\frac{1}{2} M_\square + \frac{1}{6} M_\square \right) \]

So

\[\Psi_\square + \Psi_\square = M_\square + M_\square + M_\square \]
Computing coefficients

As another example, \(z = 2 \),

\[
\Psi = z \psi^* = 2 \left(\frac{1}{2} M + \frac{1}{3} M \right)
\]

\[
\Psi = z \psi^* = 2 \left(\frac{1}{2} M + \frac{1}{6} M \right)
\]

So

\[
\Psi + \Psi = M + M + M
\]

\[
= m + m
\]
Computing coefficients

As another example, \(z = 2 \),

\[
\Psi = z \psi^* = 2 \left(\frac{1}{2} M + \frac{1}{3} M \right)
\]

\[
\Psi = z \psi^* = 2 \left(\frac{1}{2} M + \frac{1}{6} M \right)
\]

So

\[
\Psi + \Psi = M + M + M
\]

\[
= m + m = m m = p.
\]
Computing coefficients

As another example, $z = 2,$

$$\Psi = z \psi^* = 2 \left(\frac{1}{2} M + \frac{1}{3} M \right)$$

$$\Psi = z \psi^* = 2 \left(\frac{1}{2} M + \frac{1}{6} M \right)$$

So

$$\Psi + \Psi = M + M + M = m + m = m m = p.$$

Theorem (BDHMN)

Type 1 QSym powers sum to Sym powers:

$$p_\lambda = \sum_{\tilde{\alpha} = \lambda} \Psi_\alpha.$$
Theorem: \[p_\lambda = \sum_{\tilde{\alpha} = \lambda} \Psi_\alpha, \quad \text{where} \quad \Psi_\alpha = z\tilde{\alpha} \sum_{\alpha \preceq \beta} \frac{1}{\pi(\alpha, \beta)} M_\beta. \]

Proof outline: For compositions \(\alpha \) and \(\beta \), define \(O_{\alpha, \beta} \) be the set of ordered set partitions \((B_1, \cdots, B_{\ell(\beta)}) \) of \(\{1, \cdots, \ell(\alpha)\} \) satisfying

\[
\beta_j = \sum_{i \in B_j} \alpha_i \quad \text{for} \quad 1 \leq j \leq \ell(\beta).
\]
Theorem: \(p_\lambda = \sum_{\tilde{\alpha} = \lambda} \Psi_\alpha, \) where \(\Psi_\alpha = z_{\tilde{\alpha}} \sum_{\alpha \preceq \beta} \frac{1}{\pi(\alpha, \beta)} M_\beta. \)

Proof outline: For compositions \(\alpha \) and \(\beta \), define \(O_{\alpha, \beta} \) be the set of ordered set partitions \((B_1, \ldots, B_{\ell(\beta)}) \) of \(\{1, \ldots, \ell(\alpha)\} \) satisfying

\[
\beta_j = \sum_{i \in B_j} \alpha_i \quad \text{for } 1 \leq j \leq \ell(\beta).
\]

For example, if

\[
\alpha = \begin{array}{|c|c|}
\hline
0 & 1 \\
\hline
\end{array} \quad \text{and} \quad \beta = \begin{array}{|c|c|c|}
\hline
0 & 0 & 1 \\
\hline
\end{array},
\]

then \(O_{\alpha, \beta} \) contains \((\{1, 3\}, \{2\}) \) and \((\{2\}, \{1, 3\}) \).
Theorem: \(p_\lambda = \sum_{\tilde{\alpha} = \lambda} \Psi_\alpha \), where \(\Psi_\alpha = z\tilde{\alpha} \sum_{\alpha \leq \beta} \frac{1}{\pi(\alpha, \beta)} M_\beta \).

Proof outline: For compositions \(\alpha \) and \(\beta \), define \(O_{\alpha, \beta} \) be the set of ordered set partitions \((B_1, \ldots, B_{\ell(\beta)})\) of \(\{1, \ldots, \ell(\alpha)\} \) satisfying

\[
\beta_j = \sum_{i \in B_j} \alpha_i \text{ for } 1 \leq j \leq \ell(\beta).
\]

For example, if

\[
\alpha = \begin{array}{ccc}
& & \\
& & \\
\end{array} \quad \text{and} \quad \beta = \begin{array}{ccc}
& & \\
& & \\
\end{array},
\]

then \(O_{\alpha, \beta} \) contains \((\{1, 3\}, \{2\})\) and \((\{2\}, \{1, 3\})\).

It has been shown that

\[
p_\lambda = \sum_{\text{part'\,n } \mu} |O_{\lambda, \mu}| m_\mu, \quad \text{so that} \quad p_\lambda = \sum_{\text{comp } \beta} |O_{\lambda, \beta}| M_\beta.
\]
Theorem: \[p_\lambda = \sum_{\tilde{\alpha} = \lambda} \Psi_\alpha, \text{ where } \Psi_\alpha = z\tilde{\alpha} \sum_{\alpha \lessdot \beta} \frac{1}{\pi(\alpha, \beta)} M_\beta. \]

Proof outline: For compositions \(\alpha \) and \(\beta \), define \(O_{\alpha, \beta} \) be the set of ordered set partitions \((B_1, \cdots, B_{\ell(\beta)})\) of \(\{1, \cdots, \ell(\alpha)\} \) satisfying

\[\beta_j = \sum_{i \in B_j} \alpha_i \text{ for } 1 \leq j \leq \ell(\beta). \]

It has been shown that

\[p_\lambda = \sum_{\text{part' n } \mu} |O_{\lambda, \mu}| m_\mu, \text{ so that } p_\lambda = \sum_{\text{comp } \beta} |O_{\lambda, \beta}| M_\beta. \]

We combinatorially prove, for a fixed partition \(\lambda \) with size \(n \), and a fixed composition \(\beta \), that

\[|O_{\lambda\beta}| \frac{n!}{z_\lambda} = \sum_{\alpha \lessdot \beta, \tilde{\alpha} = \lambda} \frac{n!}{\pi(\alpha, \beta)}, \]
Theorem: \(p_\lambda = \sum_{\tilde{\alpha} = \lambda} \Psi_\alpha, \) where \(\Psi_\alpha = z\tilde{\alpha} \sum_{\alpha \preceq \beta} \frac{1}{\pi(\alpha, \beta)} M_\beta. \)

Proof outline: For compositions \(\alpha \) and \(\beta \), define \(O_{\alpha, \beta} \) be the set of ordered set partitions \((B_1, \cdots, B_{\ell(\beta)})\) of \(\{1, \cdots, \ell(\alpha)\} \) satisfying

\[
\beta_j = \sum_{i \in B_j} \alpha_i \text{ for } 1 \leq j \leq \ell(\beta).
\]

\(O_{\lambda, \mu} \) is the set of ordered partitions of \(\lambda \), and \(O_{\lambda, \beta} \) is the set of ordered partitions of \(\lambda \) into \(\beta \).

It has been shown that

\[
p_\lambda = \sum_{\text{part'} \mu} |O_{\lambda, \mu}| m_\mu,
\]
so that \(p_\lambda = \sum_{\text{comp } \beta} |O_{\lambda, \beta}| M_\beta. \)

We combinatorially prove, for a fixed partition \(\lambda \) with size \(n \), and a fixed composition \(\beta \), that

\[
|O_{\lambda, \beta}| \cdot |S^\lambda_n| = |O_{\lambda, \beta}| \frac{n!}{z\lambda} = \sum_{\alpha \preceq \beta \tilde{\alpha} = \lambda} \frac{n!}{\pi(\alpha, \beta)},
\]

where \(S^\lambda_n = \{\sigma \in S_n \text{ of cycle type } \lambda\} \).
Two ways of thinking about permutations:

- In one-line notation:

 \[\sigma = 571423689 \]

 is the permutation sending

 \[1 \mapsto 5, \ 2 \mapsto 7, \ 3 \mapsto 1, \ \text{and so on}\ldots \]
Two ways of thinking about permutations:

- **In one-line notation:**
 \[\sigma = 571423689 \]
 is the permutation sending
 \[1 \mapsto 5, \ 2 \mapsto 7, \ 3 \mapsto 1, \ \text{and so on...} \]

- **In cycle notation:**
 \[\sigma = (152763)(4)(8)(9). \]
Two ways of thinking about permutations:

- **In one-line notation:**
 \[\sigma = 571423689 \]
 is the permutation sending
 \[1 \mapsto 5, \ 2 \mapsto 7, \ 3 \mapsto 1, \ \text{and so on...} \]

- **In cycle notation:**
 \[\sigma = (152763)(4)(8)(9). \]

Several equivalent ways to write in cycle notation. We say \(\sigma \) is written in **standard form** if
- largest element of each cycle is last, and
- cycles ordered increasingly according to largest element

Ex: \((4)(631527)(8)(9)\)
Two ways of thinking about permutations:

- **In one-line notation:**
 \[\sigma = 571423689 \]
 is the permutation sending
 \[1 \mapsto 5, \ 2 \mapsto 7, \ 3 \mapsto 1, \ \text{and so on...} \]

- **In cycle notation:**
 \[\sigma = (152763)(4)(8)(9). \]
 Several equivalent ways to write in cycle notation. We say \(\sigma \) is written in standard form if
 - largest element of each cycle is last, and
 - cycles ordered increasingly according to largest element

 Ex: \((4)(631527)(8)(9) \)

- Let \(\alpha \preceq \beta \) of size \(n \), and let \(\sigma \in S_n \). We say \(\sigma \) is **consistent** with \(\alpha \preceq \beta \) if...
Two ways of thinking about permutations:

- **In one-line notation:**

 \[\sigma = 571423689 \]

 is the permutation sending

 \[1 \mapsto 5, \ 2 \mapsto 7, \ 3 \mapsto 1, \ \text{and so on}\ldots \]

- **In cycle notation:**

 \[\sigma = (152763)(4)(8)(9). \]

 Several equivalent ways to write in cycle notation. We say \(\sigma \) is written in **standard form** if

 - largest element of each cycle is last, and
 - cycles ordered increasingly according to largest element

 Ex: \((4)(631527)(8)(9) \)

- Let \(\alpha \preceq \beta \) of size \(n \), and let \(\sigma \in S_n \). We say \(\sigma \) is **consistent** with \(\alpha \preceq \beta \) if.

 Ex: let \(\alpha = (1, 1, 2, 1, 3, 1) \) and \(\beta = (2, 2, 5) \)
Two ways of thinking about permutations:

- In one-line notation:
 \(\sigma = 571423689 \)
 is the permutation sending
 \(1 \mapsto 5, \ 2 \mapsto 7, \ 3 \mapsto 1, \) and so on...

- In cycle notation:
 \(\sigma = (152763)(4)(8)(9) \).

Several equivalent ways to write in cycle notation. We say \(\sigma \) is written in standard form if
- largest element of each cycle is last, and
- cycles ordered increasingly according to largest element

Ex: \((4)(631527)(8)(9) \)

- Let \(\alpha \preceq \beta \) of size \(n \), and let \(\sigma \in S_n \). We say \(\sigma \) is consistent with \(\alpha \preceq \beta \) if...

Ex: let \(\alpha = (1, 1, 2, 1, 3, 1) \) and \(\beta = (2, 2, 5) \)

Start in one-line notation: \(571423689 \)
In cycle notation:

\[\sigma = (152763)(4)(8)(9). \]

Several equivalent ways to write in cycle notation. We say \(\sigma \) is written in standard form if

- largest element of each cycle is last, and
- cycles ordered increasingly according to largest element

Ex: \((4)(631527)(8)(9) \)

Let \(\alpha \preceq \beta \) of size \(n \), and let \(\sigma \in S_n \). We say \(\sigma \) is consistent with \(\alpha \preceq \beta \) if...

Ex: let \(\alpha = (1, 1, 2, 1, 3, 1) \) and \(\beta = (2, 2, 5) \)

Start in one-line notation:

571423689

Split according to \(\beta \):

57\|14\|23689
In cycle notation:

\[\sigma = (152763)(4)(8)(9). \]

Several equivalent ways to write in cycle notation. We say \(\sigma \) is written in standard form if

- largest element of each cycle is last, and
- cycles ordered increasingly according to largest element

Ex: \((4)(631527)(8)(9) \)

Let \(\alpha \preceq \beta \) of size \(n \), and let \(\sigma \in S_n \). We say \(\sigma \) is consistent with \(\alpha \preceq \beta \) if...

Ex: let \(\alpha = (1, 1, 2, 1, 3, 1) \) and \(\beta = (2, 2, 5) \)

Start in one-line notation: \(571423689 \)

Split according to \(\beta \): \(57|14|23689 \)

Add parentheses according to \(\alpha \): \((5)(7)|(14)|(2)(368)(9) \)
In cycle notation:

\[\sigma = (152763)(4)(8)(9). \]

Several equivalent ways to write in cycle notation. We say \(\sigma \) is written in standard form if

- largest element of each cycle is last, and
- cycles ordered increasingly according to largest element

Ex: \((4)(631527)(8)(9)\)

Let \(\alpha \preceq \beta \) of size \(n \), and let \(\sigma \in S_n \). We say \(\sigma \) is consistent with \(\alpha \preceq \beta \) if...

Ex: let \(\alpha = (1, 1, 2, 1, 3, 1) \) and \(\beta = (2, 2, 5) \)

Start in one-line notation: \(571423689 \)

Split according to \(\beta \): \(57\|14\|23689 \)

Add parentheses according to \(\alpha \): \((5)(7)\| (14)\| (2)(368)(9) \)

If the permutations in each partition are in standard form, then \(\sigma \) is consistent.
In cycle notation:

\[\sigma = (152763)(4)(8)(9). \]

Several equivalent ways to write in cycle notation. We say \(\sigma \) is written in standard form if

1. largest element of each cycle is last, and
2. cycles ordered increasingly according to largest element

Ex: \((4)(631527)(8)(9)\)

Let \(\alpha \preceq \beta \) of size \(n \), and let \(\sigma \in S_n \). We say \(\sigma \) is consistent with \(\alpha \preceq \beta \) if...

Ex: let \(\alpha = (1, 1, 2, 1, 3, 1) \) and \(\beta = (2, 2, 5) \)

Start in one-line notation: \(571423689 \)

Split according to \(\beta \): \(57\|14\|23689 \)

Add parentheses according to \(\alpha \): \((5)(7)\| (14)\| (2)(368)(9) \)

If the permutations in each partition are in standard form, then \(\sigma \) is consistent.

Non-example: \(571428369 \quad \rightarrow \quad (5)(7)\| (14)\| (2)(836)(9) \)
\[
\text{Cons}_{(1,2,1)} \approx_{(1,2,1)} = \{1234, 1243, 1342, 2134, 2143, 2341, 3124, \\
3142, 3241, 4123, 4132, 4231\},
\]

\[
\text{Cons}_{(1,2,1)} \approx_{(1,3)} = \{1234, 2134, 3124, 4123\},
\]

\[
\text{Cons}_{(1,2,1)} \approx_{(3,1)} = \{1234, 1243, 1342, 2134, 2143, 2341, 3142, 3241\},
\]

\[
\text{Cons}_{(1,2,1)} \approx_{(4)} = \{1234, 2134\}
\]
Cons\((1,2,1)\preceq(1,2,1)\) = \{1234, 1243, 1342, 2134, 2143, 2341, 3124, 3142, 3241, 4123, 4132, 4231\},

Cons\((1,2,1)\preceq(1,3)\) = \{1234, 2134, 3124, 4123\},

Cons\((1,2,1)\preceq(3,1)\) = \{1234, 1243, 1342, 2134, 2143, 2341, 3142, 3241\},

Cons\((1,2,1)\preceq(4)\) = \{1234, 2134\}

Lemma

Fix \(\alpha \preceq \beta\) of size \(n\) Then

\[n! = |\text{Cons}_{\alpha \preceq \beta}| \cdot \pi(\alpha, \beta).\]
Cons\((1,2,1)\not\leq (1,2,1)\) = \{1234, 1243, 1342, 2134, 2143, 2341, 3124, 3142, 3241, 4123, 4132, 4231\},

\[\pi((1, 2, 1), (1, 2, 1)) = 2\]

Cons\((1,2,1)\not\leq (1,3)\) = \{1234, 2134, 3124, 4123\},

\[\pi((1, 2, 1), (1, 3)) = 2 \cdot 3\]

Cons\((1,2,1)\not\leq (3,1)\) = \{1234, 1243, 1342, 2134, 2143, 2341, 3142, 3241\},

\[\pi((1, 2, 1), (3, 1)) = 1 \cdot 3\]

Cons\((1,2,1)\not\leq (4)\) = \{1234, 2134\}

\[\pi((1, 2, 1), (4)) = 1 \cdot 3 \cdot 4\]

Lemma

Fix \(\alpha \not\leq \beta\) of size \(n\) Then

\[n! = |Con_{\alpha \not\leq \beta}| \cdot \pi(\alpha, \beta)\]
Lemma

Fix \(\alpha \preceq \beta \) of size \(n \) Then

\[n! = |\text{Cons}_{\alpha \preceq \beta}| \cdot \pi(\alpha, \beta). \]

Proof: Let

\[A_{\alpha \preceq \beta} = \bigotimes_{i=1}^{\ell(\beta)} \left(\bigotimes_{j=1}^{\ell(\alpha^{(i)})} \mathbb{Z}/a_j^{(i)}\mathbb{Z} \right), \quad \text{where} \quad a_j^{(i)} = \sum_{r=1}^{j} \alpha_r^{(i)}, \]

so that \(|A_{\alpha \preceq \beta}| = \pi(\alpha, \beta) \).
Lemma

Fix $\alpha \trianglelefteq \beta$ of size n Then

$$n! = |\text{Cons}_{\alpha \trianglelefteq \beta}| \cdot \pi(\alpha, \beta).$$

Proof: Let

$$A_{\alpha \trianglelefteq \beta} = \bigotimes_{i=1}^{\ell(\beta)} \left(\bigotimes_{j=1}^{\ell(\alpha^{(i)})} \mathbb{Z}/a^{(i)}_{j}\mathbb{Z} \right),$$

where $a^{(i)}_{j} = \sum_{r=1}^{j} \alpha^{(i)}_{r}$,

so that $|A_{\alpha \trianglelefteq \beta}| = \pi(\alpha, \beta)$. Then there is a bijection

$$S_n \rightarrow \text{Cons}_{\alpha \trianglelefteq \beta} \times A_{\alpha \trianglelefteq \beta} \ldots$$
Lemma

Fix $\alpha \preceq \beta$ of size n Then

$$n! = |\text{Cons}_{\alpha \preceq \beta}| \cdot \pi(\alpha, \beta).$$

Proof: Let

$$A_{\alpha \preceq \beta} = \bigotimes_{i=1}^{\ell(\beta)} \left(\bigotimes_{j=1}^{\ell(\alpha^{(i)})} \mathbb{Z}/a_{j}^{(i)} \mathbb{Z} \right), \quad \text{where } a_{j}^{(i)} = \sum_{r=1}^{j} \alpha_{r}^{(i)},$$

so that $|A_{\alpha \preceq \beta}| = \pi(\alpha, \beta)$. Then there is a bijection

$$S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} \ldots$$

Example: $\alpha = (2, 3, 2, 2), \beta = (5, 4), \sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta})$.

Split σ according to β: $\underbrace{73962}_\sigma^{(1)} \| \underbrace{8451}_\sigma^{(1)}$

For each i, “rotate” $\sigma^{(i)}$ into consistency with to $\alpha \preceq \beta$, and record rotations...
Then there is a bijection
\[S_n \to \text{Cons}_{\alpha \lesssim \beta} \times A_{\alpha \lesssim \beta} : \]

Example: \(\alpha = \begin{array}{c}
\hline
\hline
\hline
\end{array}, \quad \beta = \begin{array}{c}
\hline
\hline
\hline
\end{array}, \quad \sigma = 739628451 \, (\in \text{Cons}_{\alpha \lesssim \beta}) .
\]

Split \(\sigma \) according to \(\beta \): \(\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}} \)

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \lesssim \beta \), and record rotations. . .

\(i = 1 : \sigma^{(1)} = 73962, \quad \beta_1 \) parts of \(\alpha \): \begin{array}{c}
\hline
\hline
\hline
\end{array}
Then there is a bijection

\[S_n \to \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{cccc} \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \end{array} \), \(\beta = \begin{array}{cccc} \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \end{array} \), \(\sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}) \).

Split \(\sigma \) according to \(\beta \): \(\sigma^{(1)} \parallel \sigma^{(2)} \)

\(\sigma^{(1)} = 73962 \), \(\sigma^{(2)} = 8451 \).

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations...

\(i = 1 \): \(\sigma^{(1)} = 73962 \), \(\beta_1 \) parts of \(\alpha \): \begin{array}{cccc} \hline & & & \\ \hline & & & \\ \hline & & & \end{array} \)

block:
Then there is a bijection

\[S_n \to \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{c}
\text{Block 1} \\
\text{Block 2} \\
\end{array} \), \(\beta = \begin{array}{c}
\text{Block 1} \\
\text{Block 2} \\
\end{array} \), \(\sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}) \).

Split \(\sigma \) according to \(\beta \):

\[\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}} \]

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations...

\[i = 1: \ \sigma^{(1)} = 73962, \quad \beta_1 \text{ parts of } \alpha: \begin{array}{c}
\text{Block 1} \\
\text{Block 2} \\
\end{array} \\
\text{Block: } 73962 \]
Then there is a bijection

\[S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{c}
\hline
\hline
\end{array} \), \(\beta = \begin{array}{c}
\hline
\hline
\end{array} \), \(\sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}) \).

Split \(\sigma \) according to \(\beta \):

\[\begin{array}{c}
\hline
\hline
\end{array} \parallel \begin{array}{c}
\hline
\hline
\end{array} \\
(\sigma^{(1)}, \sigma^{(2)})
\]

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations...

\(i = 1 \):

\(\sigma^{(1)} = 73962 \), \(\beta_1 \) parts of \(\alpha \):

\[\begin{array}{c}
\hline
\hline
\end{array} \]

block: \(73962 \xrightarrow{\text{rotate left by 3}} 62739 \), \(s^{(1)}_2 = 3 \)
Then there is a bijection

\[S_n \rightarrow \text{Cons}_{\alpha \lessdot \beta} \times A_{\alpha \lessdot \beta} : \]

Example: \(\alpha = \begin{array}{c}
\end{array} \), \(\beta = \begin{array}{c}
\end{array} \), \(\sigma = 739628451 \) (\(\in \text{Cons}_{\alpha \lessdot \beta} \)).

Split \(\sigma \) according to \(\beta \):

\[\underbrace{73962}_{\sigma^{(1)}} \parallel \underbrace{8451}_{\sigma^{(2)}} \]

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \lessdot \beta \), and record rotations...

\(i = 1 \): \(\sigma^{(1)} = 73962 \), \(\beta_1 \) parts of \(\alpha \):

\begin{array}{c}
\end{array}

block: \(73962 \xrightarrow{\text{rotate left by 3}} 62739 \), \(s_2^{(1)} = 3 \)

\begin{array}{c}
\end{array}

block:
Then there is a bijection

$$S_n \to \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} :$$

Example: \(\alpha = \begin{array}{ccc}
\text{6} & \text{3} & \text{9} \\
\text{9} & \text{6} & \text{2}
\end{array}, \quad \beta = \begin{array}{ccc}
\text{3} & \text{6} & \text{2} \\
\text{4} & \text{5} & \text{1}
\end{array}, \quad \sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}).$$

Split \(\sigma\) according to \(\beta\): \(\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}\)

For each \(i\), “rotate” \(\sigma^{(i)}\) into consistency with to \(\alpha \preceq \beta\), and record rotations...

\(i = 1: \ \sigma^{(1)} = 73962, \quad \beta_1 \ \text{parts of} \ \alpha: \begin{array}{ccc}
\text{6} & \text{3} & \text{9} \\
\text{9} & \text{6} & \text{2}
\end{array}\)

block: \(73962 \xrightarrow{\text{rotate left by 3}} 62739, \quad s_{2}^{(1)} = 3\)

block: \(62|739\)
Then there is a bijection
\[S_n \to \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{c} \hline \hline \hline \hline \end{array} \), \(\beta = \begin{array}{c|c|c|c} \hline & & & \hline & & & \hline \end{array} \), \(\sigma = 739628451 (\in \text{Cons}_{\alpha \preceq \beta}) \).

Split \(\sigma \) according to \(\beta \): \(\underbrace{73962}_{\sigma^{(1)}} \parallel \underbrace{8451}_{\sigma^{(2)}} \)

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations...

\(i = 1 \): \(\sigma^{(1)} = 73962 \), \(\beta_1 \) parts of \(\alpha \): \begin{array}{c|c} \hline & \hline & \hline & \hline \end{array} \)

\begin{array}{c|c|c|c} \hline & & & \hline & & & \hline \end{array} \)

\begin{array}{c|c|c|c} \hline & & & \hline & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)

\begin{array}{c|c|c|c|c} \hline & & & & \hline & & & & \hline \end{array} \)
Then there is a bijection

$$S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times \text{A}_{\alpha \preceq \beta} :$$

Example: $\alpha = \begin{array}{c|c|c|c|c|c}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
6 & 5 & 4 & 3 & 2 & 1
\end{array}$, $\beta = \begin{array}{c|c|c|c|c|c}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
6 & 5 & 4 & 3 & 2 & 1
\end{array}$, $\sigma = 739628451$ ($\in \text{Cons}_{\alpha \preceq \beta}$).

Split σ according to β: $73962 \parallel 8451$

For each i, “rotate” $\sigma^{(i)}$ into consistency with to $\alpha \preceq \beta$, and record rotations.

$i = 1$: $\sigma^{(1)} = 73962$, β_1 parts of α:

[[[1][1][1][1][1][1]]] block: $73962 \xrightarrow{\text{rotate left by } 3} 62739$, $s_2^{(1)} = 3$

[[[2][2][2][2]]] block: $62|739 \xrightarrow{\text{rotate left by } 2} 26|739$, $s_1^{(1)} = 2$

$i = 2$: $\sigma^{(2)} = 8451$, β_2 parts of α: [[[[2][2][2][2]]]]
Then there is a bijection

\[S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \), \(\beta = \), \(\sigma = 739628451 (\in \text{Cons}_{\alpha \preceq \beta}) \).

Split \(\sigma \) according to \(\beta \):

\[
\sigma(1) \parallel \sigma(2)
\]

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations...

\(i = 1 \): \(\sigma^{(1)} = 73962 \), \(\beta_1 \) parts of \(\alpha \):

block: \(73962 \xrightarrow{\text{rotate left by 3}} 62739 \), \(s_2^{(1)} = 3 \)

block: \(62|739 \xrightarrow{\text{rotate left by 2}} 26|739 \), \(s_1^{(1)} = 2 \)

\(i = 2 \): \(\sigma^{(2)} = 8451 \), \(\beta_2 \) parts of \(\alpha \):

block:
Then there is a bijection
\[S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{c}
\text{block: 5}
\end{array} \), \(\beta = \begin{array}{c}
\text{block: 4}
\end{array} \), \(\sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}) \).

Split \(\sigma \) according to \(\beta \): \(\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}} \)

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations. . .

\(i = 1 \): \(\sigma^{(1)} = 73962 \), \(\beta_1 \) parts of \(\alpha \):

\begin{array}{c}
\text{block: 73962 \rotateleft{3} \rightarrow 62739}, \quad s_2^{(1)} = 3
\end{array}

\begin{array}{c}
\text{block: 62|739 \rotateleft{2} \rightarrow 26|739}, \quad s_1^{(1)} = 2
\end{array}

\(i = 2 \): \(\sigma^{(2)} = 8451 \), \(\beta_2 \) parts of \(\alpha \):

\begin{array}{c}
\text{block: 8451}
\end{array}
Then there is a bijection
\[S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{c}
\text{block:}
\end{array} \)
\[\begin{array}{c}
\end{array} \]
\(\beta = \begin{array}{c}
\text{block:}
\end{array} \)
\[\begin{array}{c}
\end{array} \]
\(\sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}) . \)

Split \(\sigma \) according to \(\beta \):
\[73962 \ parallel 8451 \]
\[\sigma(1) \ parallel \sigma(2) \]

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations. . .

\(i = 1 \): \(\sigma^{(1)} = 73962 \), \(\beta_1 \) parts of \(\alpha \):
\[\begin{array}{c}
\text{block:}
\end{array} \]
\[73962 \ \text{rotate left by} \ 3 \rightarrow \ 62739, \quad s_2^{(1)} = 3 \]

\[\begin{array}{c}
\text{block:}
\end{array} \]
\[62 | 739 \ \text{rotate left by} \ 2 \rightarrow \ 26 | 739, \quad s_1^{(1)} = 2 \]

\(i = 2 \): \(\sigma^{(2)} = 8451 \), \(\beta_2 \) parts of \(\alpha \):
\[\begin{array}{c}
\text{block:}
\end{array} \]
\[8451 \ \text{rotate left by} \ 1 \rightarrow \ 4518, \quad s_2^{(2)} = 1 \]

Invertible!
Then there is a bijection

\[S_n \to \text{Cons}_{\alpha \succeq \beta} \times A_{\alpha \succeq \beta} : \]

Example: \(\alpha = \begin{array}{c}
\hline
1 & 2 \\
\hline
3 & 4 \\
\hline
\end{array} \), \(\beta = \begin{array}{c}
\hline
4 & 3 \\
\hline
2 & 1 \\
\hline
\end{array} \), \(\sigma = 739628451 \ (\in \text{Cons}_{\alpha \succeq \beta}) \).

Split \(\sigma \) according to \(\beta \): \(\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}} \)

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations...

\[i = 1: \sigma^{(1)} = 73962, \quad \beta_1 \text{ parts of } \alpha: \begin{array}{c}
\hline
1 & 2 \\
\hline
3 & 4 \\
\hline
\end{array} \]

\begin{itemize}
 \item \(\box{\begin{array}{c}
\hline
1 & 2 \\
\hline
3 & 4 \\
\hline
\end{array}} \) block: \(73962 \xrightarrow{\text{rotate left by 3}} 62739 \), \(s_2^{(1)} = 3 \)
 \item \(\box{\begin{array}{c}
\hline
1 & 2 \\
\hline
3 & 4 \\
\hline
\end{array}} \) block: \(62|739 \xrightarrow{\text{rotate left by 2}} 26|739 \), \(s_1^{(1)} = 2 \)
\end{itemize}

\[i = 2: \sigma^{(2)} = 8451, \quad \beta_2 \text{ parts of } \alpha: \begin{array}{c}
\hline
1 & 2 \\
\hline
3 & 4 \\
\hline
\end{array} \]

\begin{itemize}
 \item \(\box{\begin{array}{c}
\hline
1 & 2 \\
\hline
3 & 4 \\
\hline
\end{array}} \) block: \(8451 \xrightarrow{\text{rotate left by 1}} 4518 \), \(s_2^{(2)} = 1 \)
 \item \(\box{\begin{array}{c}
\hline
1 & 2 \\
\hline
3 & 4 \\
\hline
\end{array}} \) block:
Then there is a bijection

\[S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{c} \ast \end{array}, \beta = \begin{array}{c} \ast \ \ast \ \ast \end{array}, \sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}). \)

Split \(\sigma \) according to \(\beta \):

\(\sigma = \begin{array}{c} 73962 \ \ | \ \ 8451 \end{array} \)

\(\sigma^{(1)} \) \(\ | \ \ \sigma^{(2)} \)

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations . . .

\(i = 1: \sigma^{(1)} = 73962, \ \beta_1 \) parts of \(\alpha \):

\[
\begin{array}{c}
\begin{array}{c}
\ast \ \ast
\end{array}
\]
Then there is a bijection

\[S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\hline \end{array} \), \(\beta = \begin{array}{|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\hline \end{array} \), \(\sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}) \).

Split \(\sigma \) according to \(\beta \):

\[\underbrace{73962}_{\sigma^{(1)}} \bigm/ \underbrace{8451}_{\sigma^{(2)}} \]

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations...

\begin{align*}
\text{i} = 1: & \quad \sigma^{(1)} = 73962, \quad \beta_1 \text{ parts of } \alpha: \begin{array}{|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\hline \end{array} \\
\text{block: } & \quad 73962 \quad \text{rotate left by 3} \quad \rightarrow \quad 62739, \quad s^{(1)}_2 = 3 \\
\text{block: } & \quad 62|739 \quad \text{rotate left by 2} \quad \rightarrow \quad 26|739, \quad s^{(1)}_1 = 2 \\
\text{i} = 2: & \quad \sigma^{(2)} = 8451, \quad \beta_2 \text{ parts of } \alpha: \begin{array}{|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\hline \end{array} \\
\text{block: } & \quad 8451 \quad \text{rotate left by 1} \quad \rightarrow \quad 4518, \quad s^{(2)}_2 = 1 \\
\text{block: } & \quad 45|18 \quad \text{rotate left by 0} \quad \rightarrow \quad 45|18
\end{align*}
Then there is a bijection

\[S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{c}
\hline
\hline
\hline
\hline
\end{array} \), \(\beta = \begin{array}{c}
\hline
\hline
\hline
\hline
\end{array} \), \(\sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}) \).

Split \(\sigma \) according to \(\beta \):

\[73962 \parallel 8451 \]

\[\sigma^{(1)} \parallel \sigma^{(2)} \]

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations.

\[i = 1: \ \sigma^{(1)} = 73962, \ \beta_1 \text{ parts of } \alpha: \begin{array}{c}
\hline
\hline
\hline
\hline
\end{array} \]

\[\begin{array}{c}
\hline
\hline
\hline
\hline
\end{array} \text{ block: } \begin{array}{c}
73962 \text{ rotate left by } 3
\end{array} \rightarrow \begin{array}{c}
62739
\end{array}, \ s_2^{(1)} = 3 \]

\[\begin{array}{c}
\hline
\hline
\hline
\hline
\end{array} \text{ block: } \begin{array}{c}
62|739 \text{ rotate left by } 2
\end{array} \rightarrow \begin{array}{c}
26|739
\end{array}, \ s_1^{(1)} = 2 \]

\[i = 2: \ \sigma^{(2)} = 8451, \ \beta_2 \text{ parts of } \alpha: \begin{array}{c}
\hline
\hline
\hline
\hline
\end{array} \]

\[\begin{array}{c}
\hline
\hline
\hline
\hline
\end{array} \text{ block: } \begin{array}{c}
8451 \text{ rotate left by } 1
\end{array} \rightarrow \begin{array}{c}
4518
\end{array}, \ s_2^{(2)} = 1 \]

\[\begin{array}{c}
\hline
\hline
\hline
\hline
\end{array} \text{ block: } \begin{array}{c}
45|18 \text{ rotate left by } 0
\end{array} \rightarrow \begin{array}{c}
45|18
\end{array}, \ s_1^{(2)} = 0 \]
Then there is a bijection

\[S_n \to \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta} : \]

Example: \(\alpha = \begin{array}{c}
\hline
2 & 2 & 2 \\
\hline
\end{array} \), \(\beta = \begin{array}{c}
\hline
3 & 2 & 2 \\
\hline
\end{array} \), \(\sigma = 739628451 \ (\in \text{Cons}_{\alpha \preceq \beta}) \).

Split \(\sigma \) according to \(\beta \):

\[
\begin{array}{c}
73962 \\
\hline
\end{array} \parallel \begin{array}{c}
8451 \\
\hline
\end{array} \\
\sigma^{(1)} \parallel \sigma^{(2)}
\]

For each \(i \), “rotate” \(\sigma^{(i)} \) into consistency with to \(\alpha \preceq \beta \), and record rotations.

\[
i = 1: \sigma^{(1)} = 73962, \quad \beta_1 \text{ parts of } \alpha: \begin{array}{c}
\hline
2 & 2 & 2 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\hline
2 & 2 & 2 \\
\hline
\end{array} \text{ block: } 73962 \quad \text{rotate left by 3} \rightarrow 62739, \quad s_2^{(1)} = 3
\]

\[
\begin{array}{c}
\hline
3 & 2 & 2 \\
\hline
\end{array} \text{ block: } 62|739 \quad \text{rotate left by 2} \rightarrow 26|739, \quad s_1^{(1)} = 2
\]

\[
i = 2: \sigma^{(2)} = 8451, \quad \beta_2 \text{ parts of } \alpha: \begin{array}{c}
\hline
3 & 2 & 2 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\hline
3 & 2 & 2 \\
\hline
\end{array} \text{ block: } 8451 \quad \text{rotate left by 1} \rightarrow 4518, \quad s_2^{(2)} = 1
\]

\[
\begin{array}{c}
\hline
3 & 2 & 2 \\
\hline
\end{array} \text{ block: } 45|18 \quad \text{rotate left by 0} \rightarrow 45|18, \quad s_1^{(2)} = 0
\]

So \(739628451 \mapsto (267394518, ((2, 3), (0, 1))) \).
Then there is a bijection

$$S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta}:$$

Example: $\alpha = \begin{array}{cccc}
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet}
\end{array}$, $\beta = \begin{array}{cccc}
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet}
\end{array}$, $\sigma = 739628451 \in \text{Cons}_{\alpha \preceq \beta}$.

Split σ according to β: $\underbrace{73962}_{\sigma^{(1)}} \| \underbrace{8451}_{\sigma^{(2)}}$

For each i, “rotate” $\sigma^{(i)}$ into consistency with to $\alpha \preceq \beta$, and record rotations.

$i = 1$: $\sigma^{(1)} = 73962$, β_1 parts of α: $\begin{array}{cccc}
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet}
\end{array}$

\begin{array}{l}
\text{block: } 73962 \xrightarrow{\text{rotate left by 3}} 62739, \quad s_2^{(1)} = 3 \\
\text{block: } 62|739 \xrightarrow{\text{rotate left by 2}} 26|739, \quad s_1^{(1)} = 2
\end{array}

$i = 2$: $\sigma^{(2)} = 8451$, β_2 parts of α: $\begin{array}{cccc}
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet}
\end{array}$

\begin{array}{l}
\text{block: } 8451 \xrightarrow{\text{rotate left by 1}} 4518, \quad s_2^{(2)} = 1 \\
\text{block: } 45|18 \xrightarrow{\text{rotate left by 0}} 45|18, \quad s_1^{(2)} = 0
\end{array}

So $739628451 \mapsto (267394518, ((2, 3), (0, 1)))$. Invertible!
Lemma

Fix $\alpha \preceq \beta$ of size n. Then

$$n! = \left| \text{Cons}_{\alpha \preceq \beta} \right| \cdot \pi(\alpha, \beta).$$

Proof: Let

$$A_{\alpha \preceq \beta} = \bigotimes_{i=1}^{\ell(\beta)} \left(\bigotimes_{j=1}^{\ell(\alpha^{(i)})} \mathbb{Z}/a_{j}^{(i)}\mathbb{Z} \right),$$

where $a_{j}^{(i)} = \sum_{r=1}^{j} \alpha_{r}^{(i)}$, so that $\left| A_{\alpha \preceq \beta} \right| = \pi(\alpha, \beta)$. Then there is a bijection

$$S_{n} \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta}.$$
Lemma
Fix $\alpha \preceq \beta$ of size n Then
\[n! = |\text{Cons}_{\alpha \preceq \beta}| \cdot \pi(\alpha, \beta). \]

Proof: Let
\[A_{\alpha \preceq \beta} = \prod_{i=1}^{\ell(\beta)} \left(\prod_{j=1}^{\ell(\alpha^{(i)})} \mathbb{Z}/a_j^{(i)} \mathbb{Z} \right), \quad \text{where } a_j^{(i)} = \sum_{r=1}^{j} \alpha_r^{(i)}, \]
so that $|A_{\alpha \preceq \beta}| = \pi(\alpha, \beta)$. Then there is a bijection
\[S_n \rightarrow \text{Cons}_{\alpha \preceq \beta} \times A_{\alpha \preceq \beta}. \]
□

Lemma
Fix $\alpha \preceq \beta$ of size n Then
\[|O_{\alpha \preceq \beta}| \cdot |S_{\lambda}^\alpha| = \sum_{\alpha \preceq \beta, \tilde{\alpha} = \lambda} |\text{Cons}_{\alpha \preceq \beta}|. \]
(Similar proof.)
Lemma
Fix $\alpha \preceq \beta$ of size n. Then
\[n! = |\text{Cons}_{\alpha \preceq \beta}| \cdot \pi(\alpha, \beta). \]

Lemma
Fix $\alpha \preceq \beta$ of size n. Then
\[|O_{\alpha \preceq \beta}| \cdot |S^\lambda_n| = \sum_{\substack{\alpha \preceq \beta \\ \tilde{\alpha} = \lambda}} |\text{Cons}_{\alpha \preceq \beta}|. \]

(Similar proof.)

Therefore
\[|O_{\lambda \beta}| \cdot |S^\lambda_n| = \sum_{\substack{\alpha \preceq \beta \\ \tilde{\alpha} = \lambda}} \frac{n!}{\pi(\alpha, \beta)}, \]

so that
\[p_{\lambda} = \sum_{\text{comp } \beta} |O_{\lambda, \beta}| M_\beta = \sum_{\tilde{\alpha} = \lambda} \Psi_\alpha, \quad \text{where} \quad \Psi_\alpha = z\tilde{\alpha} \sum_{\alpha \preceq \beta} \frac{1}{\pi(\alpha, \beta)} M_\beta, \]
as desired.
Type 2

In Sym the power sum basis is (essentially) self-dual:

$$\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \delta_{\lambda \mu}.$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$H(t) = \exp \left(\int \Phi(t) dt \right)$$
Type 2

In Sym the power sum basis is (essentially) self-dual:

\[\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda\mu}. \]

In NSym, the type 2 power sum basis is defined by the generating function relation

\[H(t) = \exp \left(\int \Phi(t) dt \right) \]

This is equivalent to

\[h_\alpha = \sum_{\beta \preceq \alpha} \frac{1}{\text{sp}(\beta, \alpha)} \phi_\beta, \]

where \(\text{sp}(\beta, \alpha) \) is a combinatorial statistic on the refinement \(\beta \preceq \alpha \).
Type 2

In Sym the power sum basis is (essentially) self-dual:

\[\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda\mu}. \]

In NSym, the type 2 power sum basis is defined by the generating function relation

\[H(t) = \exp \left(\int \Phi(t) dt \right) \]

This is equivalent to

\[h_\alpha = \sum_{\beta \preceq \alpha} \frac{1}{\text{sp}(\beta, \alpha)} \phi_\beta, \]

where \(\text{sp}(\beta, \alpha) \) is a combinatorial statistic on the refinement \(\beta \preceq \alpha \). So, the dual in QSym will satisfy

\[\phi^*_\alpha = \sum_{\beta \succeq \alpha} \frac{1}{\text{sp}(\alpha, \beta)} M_\beta. \]
Type 2

In Sym the power sum basis is (essentially) self-dual:

$$\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda \mu}.$$

In NSym, the type 2 power sum basis is defined by the generating function relation

$$H(t) = \exp \left(\int \Phi(t) dt \right)$$

This is equivalent to

$$h_\alpha = \sum_{\beta \preceq \alpha} \frac{1}{\text{sp}(\beta, \alpha)} \phi_\beta,$$

where $\text{sp}(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preceq \alpha$. So, the dual in QSym will satisfy

$$\phi_\alpha^* = \sum_{\beta \succeq \alpha} \frac{1}{\text{sp}(\alpha, \beta)} M_\beta.$$

Define

$$\Phi_\alpha = z_\alpha \phi_\alpha^*,$$

so that

$$\langle \phi_\alpha, \Phi_\beta \rangle = z_\alpha \delta_{\alpha \beta}.$$
Computing coefficients

\[\Phi_\alpha = z\tilde{\alpha} \sum_{\beta \trianglerighteq \alpha} \frac{1}{\text{sp}(\alpha, \beta)} M_\beta. \]

For example, we saw that

\[\text{sp}(\gamma) = \ell(\gamma)! \prod_{k} \gamma_j! \]

Then, for \(\alpha \) refining \(\beta \), the coefficient of \(M_\beta \) in \(\psi^* \alpha \) is \(\frac{1}{\text{sp}(\alpha, \beta)} \), where

\[\text{sp}(\alpha, \beta) = \text{sp}(\alpha) \cdot \text{sp}(\beta) \cdot \text{sp}(\gamma) \cdot \text{sp}(\delta) \]
Computing coefficients

\[\Phi_\alpha = z^\alpha \sum_{\beta \geq \alpha} \frac{1}{\text{sp}(\alpha, \beta)} M_\beta. \]

For example, we saw that

First, for each block, we compute \(\text{sp}(\gamma) = \ell(\gamma)! \prod_k \gamma_j : \)

\[\text{sp} \left(\begin{array}{c}
\end{array} \right) = 3!(1 \cdot 2 \cdot 1) \]

refines
Computing coefficients

\[\Phi_\alpha = z_\alpha \sum_{\beta \succeq \alpha} \frac{1}{\text{sp}(\alpha, \beta)} M_\beta. \]

For example, we saw that

\[\text{sp}(\gamma) = \ell(\gamma)! \prod_k \gamma_j: \]

\[\text{sp} \left(\begin{array}{c} \text{red} \\ \text{green} \\ \text{blue} \end{array} \right) = 3!(1 \cdot 2 \cdot 1) \]

Then, for \(\alpha \) refining \(\beta \), the coefficient of \(M_\beta \) in \(\psi_\alpha^* \) is \(1/\text{sp}(\alpha, \beta) \), where

\[\text{sp} \left(\begin{array}{c} \text{red} \\ \text{green} \\ \text{blue} \end{array} \right) = \text{sp} \left(\begin{array}{c} \text{red} \end{array} \right) \text{sp} \left(\begin{array}{c} \text{green} \end{array} \right) \text{sp} \left(\begin{array}{c} \text{blue} \end{array} \right) \text{sp} \left(\begin{array}{c} \text{blue} \end{array} \right) \]

\[= 3!(1 \cdot 2 \cdot 1) \cdot 1!(2) \cdot 1!(5) \cdot 3!(1 \cdot 1 \cdot 2) \]
Computing coefficients

\[\text{sp } \left(\begin{array}{c} \bullet \end{array} \right) = \ell(\gamma)! \prod_k \gamma_j = 3!(1 \cdot 2 \cdot 1) \]

\[\text{sp } \left(\begin{array}{c} \bullet \end{array}, \begin{array}{c} \bullet \end{array} \right) = \text{sp } \left(\begin{array}{c} \bullet \end{array} \right) \]

As another example, \(z \left(\begin{array}{c} \bullet \end{array} \right) = 2, \)

\[\Phi \left(\begin{array}{c} \bullet \end{array} \right) = z \left(\begin{array}{c} \bullet \end{array} \bullet \right) \phi^* = 2 \left(\frac{1}{2} M + \frac{1}{4} M \right) \]

\[\Phi \left(\begin{array}{c} \bullet \end{array} \right) = z \left(\begin{array}{c} \bullet \end{array} \bullet \right) \phi^* = 2 \left(\frac{1}{2} M + \frac{1}{4} M \right) \]
Computing coefficients

\[\text{sp} \left(\begin{array}{c}
\text{cell1} \\
\text{cell2}
\end{array} \right) = \ell(\gamma)! \prod_k \gamma_j = 3!(1 \cdot 2 \cdot 1) \]

\[\text{sp} \left(\begin{array}{c}
\text{cell1, cell2} \\
\text{cell3, cell4}
\end{array} \right) = \text{sp} \left(\begin{array}{c}
\text{cell1}
\end{array} \right) \text{sp} \left(\begin{array}{c}
\text{cell2}
\end{array} \right) \text{sp} \left(\begin{array}{c}
\text{cell3}
\end{array} \right) \text{sp} \left(\begin{array}{c}
\text{cell4}
\end{array} \right) \]

As another example, \(z_{\text{cell1}} = 2 \),

\[\Phi_{\text{cell1}} = z_{\text{cell1}} \phi^*_{\text{cell1}} = 2 \left(\frac{1}{2} M_{\text{cell1}} + \frac{1}{4} M_{\text{cell2}} \right) \]

\[\Phi_{\text{cell2}} = z_{\text{cell2}} \phi^*_{\text{cell2}} = 2 \left(\frac{1}{2} M_{\text{cell1}} + \frac{1}{4} M_{\text{cell2}} \right) \]

So

\[\Phi_{\text{cell1}} + \Phi_{\text{cell2}} = M_{\text{cell1}} + M_{\text{cell2}} + M_{\text{cell3}} \]
Computing coefficients

$$\text{sp} \left(\begin{array}{c} \vdots \\ \vdots \end{array} \right) = \ell(\gamma)! \prod_k \gamma_j = 3!(1 \cdot 2 \cdot 1)$$

$$\text{sp} \left(\begin{array}{cc} \\ & \\ \end{array} \right) = \text{sp} \left(\begin{array}{c} \vdots \\ \vdots \end{array} \right) \text{sp} \left(\begin{array}{c} \vdots \\ \vdots \end{array} \right) \text{sp} \left(\begin{array}{c} \vdots \\ \vdots \end{array} \right) \text{sp} \left(\begin{array}{c} \vdots \\ \vdots \end{array} \right)$$

As another example, $z = 2$,

$$\Phi = z \phi^* = 2 \left(\frac{1}{2} M + \frac{1}{4} M \right)$$

$$\Phi = z \phi^* = 2 \left(\frac{1}{2} M + \frac{1}{4} M \right)$$

So

$$\Phi + \Phi = M + M + M = m + m$$
Computing coefficients

\[\text{sp} \left(\begin{array}{c} \square \\ \square \end{array} \right) = \ell(\gamma)! \prod_k \gamma_j = 3!(1 \cdot 2 \cdot 1) \]

\[\text{sp} \left(\begin{array}{c} \square \\ \square, \square \end{array} \right) = \text{sp} \left(\begin{array}{c} \square \\ \square \end{array} \right) \]

As another example, \(z \square = 2, \)

\[\Phi \square = z \square \phi^* \square = 2 \left(\frac{1}{2} M \square + \frac{1}{4} M \square \right) \]

\[\Phi \square = z \square \phi^* \square = 2 \left(\frac{1}{2} M \square + \frac{1}{4} M \square \right) \]

So

\[\Phi \square + \Phi \square = M \square + M \square + M \square \]

\[= m \square + m \square = m \square m \square = p \square p \square = p \square \square. \]
Computing coefficients

As another example, \(z = 2 \),

\[
\Phi = z \phi^* = 2 \left(\frac{1}{2} M + \frac{1}{4} M \right)
\]

So

\[
\Phi + \Phi = M + M + M
= m + m = m m = p p = p.
\]

Theorem (BDHNM)

Type 2 QSym powers sum to Sym powers:

\[
p_{\lambda} = \sum_{\tilde{\alpha}=\lambda} \Phi_{\alpha}.
\]