Centralizers of the infinite symmetric group

Zajj Daugherty

Joint with Peter Herbrich

Dartmouth College

November 26, 2013
Schur-Weyl duality – a warm-up

Start with the symmetric group S_k: permutations of $1, \ldots, k$. Depict using permutation diagrams:
Schur-Weyl duality – a warm-up

Start with the symmetric group S_k: permutations of $1, \ldots, k$. Depict using permutation diagrams:

Multiplication computed by concatenation.
Schur-Weyl duality – a warm-up

Start with the symmetric group S_k: permutations of $1, \ldots, k$. Depict using permutation diagrams:

Multiplication computed by concatenation.
Schur-Weyl duality – a warm-up

Start with the symmetric group S_k: permutations of $1, \ldots, k$. Depict using permutation diagrams:

Multiplication computed by concatenation.
Schur-Weyl duality – a warm-up

Centralizer algebras: (Schur 1901)
Schur-Weyl duality – a warm-up

Centralizer algebras: (Schur 1901)

1. $\text{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^\otimes k$ diagonally.

\[g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k. \]
Schur-Weyl duality – a warm-up

Centralizer algebras: (Schur 1901)

1. $\text{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^\otimes k$ diagonally.

 \[
g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.
\]

2. S_k also acts on $(\mathbb{C}^n)^\otimes k$ by place permutation.
Schur-Weyl duality – a warm-up

Centralizer algebras: (Schur 1901)

1. $\text{GL}_n(\mathbb{C})$ acts on $\mathbb{C}^n \otimes \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n = (\mathbb{C}^n)^{\otimes k}$ diagonally.

 $$g \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_k.$$

2. S_k also acts on $(\mathbb{C}^n)^{\otimes k}$ by place permutation.

3. These actions commute!

$$gv_3 \otimes gv_1 \otimes gv_5 \otimes gv_2 \otimes gv_4$$

vs.

$$gv_1 \otimes gv_2 \otimes gv_3 \otimes gv_4 \otimes gv_5$$
Schur-Weyl duality – a warm-up

Schur-Weyl duality: S_k and GL_n have commuting actions on $(C^n)^\otimes k$, and their images fully centralize each in $End\left((C^n)^\otimes k \right)$. Why this is exciting: Huge transfer of information! Centralizer relationship produces $(C^n)^\otimes k \cong \bigoplus \lambda \vdash k \ G_\lambda \otimes S_\lambda$ as a GL_n-S_k bimodule, where G_λ are distinct irreducible GL_n-modules and S_λ are distinct irreducible S_k-modules.

For example, $C^n \otimes C^n \otimes C^n \cong (G \otimes S) \oplus (G \otimes S) \oplus \ldots$
Schur-Weyl duality – a warm-up

Schur-Weyl duality: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$, and their images fully centralize each in $\text{End} \left((\mathbb{C}^n)^{\otimes k} \right)$.

Why this is exciting: Huge transfer of information!

Centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda$$

as a GL_n-S_k bimodule,

where G^λ are distinct irreducible GL_n-modules

S^λ are distinct irreducible S_k-modules
Schur-Weyl duality – a warm-up

Schur-Weyl duality: S_k and GL_n have commuting actions on $(\mathbb{C}^n)^{\otimes k}$, and their images fully centralize each in $\text{End} \left((\mathbb{C}^n)^{\otimes k} \right)$.

Why this is exciting: Huge transfer of information!

Centralizer relationship produces

$$(\mathbb{C}^n)^{\otimes k} \cong \bigoplus_{\lambda \vdash k} G^\lambda \otimes S^\lambda$$ as a GL_n-S_k bimodule,

where G^λ are distinct irreducible GL_n-modules

and S^λ are distinct irreducible S_k-modules

For example,

$$\mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n \cong \left(G^\square \otimes S^\square \right) \oplus \left(G^\diamondsuit \otimes S^\diamondsuit \right) \oplus \left(G^\heartsuit \otimes S^\heartsuit \right)$$
Switching roles: the partition algebra

Let V be the permutation representation of S_n:

$n \times n$ matrices with 1's and 0's \hspace{1cm} \text{i.e.} \hspace{1cm} \sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^\otimes k$:

$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$
Switching roles: the partition algebra

Let V be the permutation representation of S_n:

$n \times n$ matrices with 1’s and 0’s \quad i.e. \quad \sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^\otimes k$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?
Switching roles: the partition algebra

Let V be the permutation representation of S_n:

$n \times n$ matrices with 1’s and 0’s i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V \otimes k$:

$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$

What commutes?

Permutation of the factors again. But lots more!
Switching roles: the partition algebra

Let V be the permutation representation of S_n:

$n \times n$ matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^\otimes k$:

$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$

What commutes?
Permutation of the factors again. But lots more!
Switching roles: the partition algebra

Let V be the permutation representation of S_n:

$n \times n$ matrices with 1’s and 0’s i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V \otimes k$:

$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$

What commutes?
Permutation of the factors again. But lots more!

\[\varphi \]
Switching roles: the partition algebra

Let V be the permutation representation of S_n:

$n \times n$ matrices with 1's and 0's i.e. $\sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^\otimes k$:

$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$

What commutes?
Permutation of the factors again. But lots more!
Switching roles: the partition algebra

Let V be the permutation representation of S_n:

$n \times n$ matrices with 1’s and 0’s \quad \text{i.e.} \quad \sigma \cdot v_i = v_{\sigma(i)}$

Now let S_n act diagonally on $V^\otimes k$:

$$\sigma \cdot (v_{i_1} \otimes \cdots \otimes v_{i_k}) = v_{\sigma(i_1)} \otimes \cdots \otimes v_{\sigma(i_k)}$$

What commutes?
Permutation of the factors again. \quad \text{But lots more!}

$$\delta_{a=b=c} \quad (v_a \otimes v_a) \otimes \left(\sum_{i=1}^{n} v_i \otimes v_i \right)$$

\[\uparrow \varphi \]
Set partitions

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k] = \{1, \ldots, k\} \quad \text{and} \quad [k'] = \{1', \ldots, k'\}.$$
Set partitions

Fix \(k \in \mathbb{Z}_{>0} \), and let

\[
[k] = \{1, \ldots, k\} \quad \text{and} \quad [k'] = \{1', \ldots, k'\}.
\]

We’re interested in set partitions of \([k] \cup [k']\).

\[
\begin{array}{c}
\{1,2\} \\
\{3\} \\
\{2',3',4',4\}
\end{array}
\]
Set partitions

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k] = \{1, \ldots, k\} \quad \text{and} \quad [k'] = \{1', \ldots, k'\}.$$

We’re interested in set partitions of $[k] \cup [k']$. Either as sets of sets

$$d = \{\{1, 2, 1'\}, \{3\}, \{2', 3', 4', 4\}\}$$

or as diagrams (considering connected components)
Set partitions

Fix $k \in \mathbb{Z}_{>0}$, and let

$$[k] = \{1, \ldots, k\} \quad \text{and} \quad [k'] = \{1', \ldots, k'\}.$$

We’re interested in set partitions of $[k] \cup [k']$. Either as sets of sets

$$d = \{\{1, 2, 1'\}, \{3\}, \{2', 3', 4', 4\}\}$$

or as diagrams (considering connected components)

(Both encode the map $v_a \otimes v_b \otimes v_c \otimes v_d \mapsto \delta_{b=c=d}(v_a \otimes v_a) \otimes \sum_{i=1}^{n} v_i \otimes v_b)$
The partition algebra

Multiplying diagrams:

\[\begin{array}{ccc}
1 & 2 \\
\bullet & \bullet \\
1' & 2' \\
\end{array} \quad \begin{array}{c}
3 \\
\bullet \\
3' \\
\end{array} \quad \begin{array}{c}
4 \\
\bullet \\
4' \\
\end{array} \]

\[\begin{array}{c}
3 \\
\bullet \\
3' \\
\end{array} \quad \begin{array}{c}
4 \\
\bullet \\
4' \\
\end{array} \]

The partition algebra \(P_k(n) \) is the \(C \)-span of the partition diagrams with this product.

Nice facts:

- \(\ast \) Associative algebra with identity \(1 = \{1,1'\}, \ldots, \{k,k'\} \).
- \(\ast \) \(\dim(P_k(n)) = \) the Bell number \(B(2^k) \).
- \(\ast \) \(S_n \) and \(P_k(n) \) centralize each other in \(\text{End}(V \otimes k) \).
The partition algebra

Multiplying diagrams:

\[
1 \quad 2 \quad 3 \quad 4 \\
1' \quad 2' \quad 3' \quad 4' \\
1'' \quad 2'' \quad 3'' \quad 4''
\]

The partition algebra \(P_k(n) \) is the \(\mathbb{C} \)-span of the partition diagrams with this product.

Nice facts:

\((\ast) \) Associative algebra with identity \(1 = \{\{1, 1'\}, \ldots, \{k, k'\}\} \).

\((\ast) \dim(P_k(n)) = \text{the Bell number } B(2k) \).

\((\ast) S_n \text{ and } P_k(n) \text{ centralize each other in } \text{End}(V \otimes k) \).
The partition algebra

Multiplying diagrams:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\bullet & \bullet & \bullet & \bullet \\
\vdots & \vdots & \vdots & \vdots \\
1'' & 2'' & 3'' & 4'' \\
\end{array}
\]

\[P_k(n) \text{ is the } C\text{-span of the partition diagrams with this product.} \]

\text{Nice facts:}

\(\text{Associative algebra with identity } 1 = \{\{1, 1'\}, \ldots, \{k, k'\}\}. \)

\(\text{dim}(P_k(n)) = \text{the Bell number } B(2^k). \)

\(S_n \text{ and } P_k(n) \text{ centralize each other in } \text{End}(V \otimes k). \)
The partition algebra

Multiplying diagrams:

\[
\begin{align*}
1 & \quad 2 & \quad 3 & \quad 4 \\
1'' & \quad 2'' & \quad 3'' & \quad 4'' \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots \\
\end{align*}
\]

\[
\begin{align*}
1 & \quad 2 & \quad 3 & \quad 4 \\
1' & \quad 2' & \quad 3' & \quad 4' \\
\end{align*}
\]

\[
= n^1
\]
The partition algebra

Multiplying diagrams:

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\cdot & \cdot & \cdot & \cdot \\
1^{\prime} & 2^{\prime} & 3^{\prime} & 4^{\prime} \\
\cdot & \cdot & \cdot & \cdot \\
1^{\prime\prime} & 2^{\prime\prime} & 3^{\prime\prime} & 4^{\prime\prime}
\end{array} \]

\[= n^1 \]

The partition algebra \(P_k(n) \) is the \(\mathbb{C} \)-span of the partition diagrams with this product.
The partition algebra

Multiplying diagrams:

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\bullet & \bullet & \bullet & \bullet \\
1'' & 2'' & 3'' & 4''
\end{array} \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\bullet & \bullet & \bullet & \bullet
\end{array} = n^1
\]

The partition algebra \(P_k(n) \) is the \(\mathbb{C} \)-span of the partition diagrams with this product.

Nice facts:

(*) Associative algebra with identity \(1 = \{\{1, 1'\}, \ldots, \{k, k'\}\} \).

(*) \(\dim(P_k(n)) = \text{the Bell number } B(2k) \).

(*) \(S_n \) and \(P_k(n) \) centralize each other in \(\text{End}(V \otimes k) \).
A connection to symmetric functions

As a consequence of the commuting relationship, the S_n-invariants in $V^\otimes k$ form a natural $P_k(n)$-module.
A connection to symmetric functions

As a consequence of the commuting relationship, the S_n-invariants in $V^\otimes k$ form a natural $P_k(n)$-module. In fact, a basis for the S_n-invariants is indexed by set partitions of $[k]$, i.e. half diagrams:
A connection to symmetric functions

As a consequence of the commuting relationship, the S_n-invariants in $V^\otimes k$ form a natural $P_k(n)$-module. In fact, a basis for the S_n-invariants is indexed by set partitions of $[k]$, i.e. half diagrams:

\[\bullet \bullet \bullet \leftrightarrow m\{\{1\},\{2\},\{3\}\} = \sum_{1\leq a,b,c \leq n} v_a \otimes v_b \otimes v_c \]

\[\begin{array}{c}
\bullet \bullet \\
\end{array} \leftrightarrow m\{\{1,3\},\{2\}\} = \sum_{1\leq a,b \leq n} v_a \otimes v_b \otimes v_a \]
A connection to symmetric functions

As a consequence of the commuting relationship, the \(S_n \)-invariants in \(V \otimes^k \) form a natural \(P_k(n) \)-module. In fact, a basis for the \(S_n \)-invariants is indexed by set partitions of \([k]\), i.e. half diagrams:

\[
\begin{align*}
\bullet & \quad \bullet & \quad \bullet & \quad \bullet & \quad \longleftrightarrow & \quad m\{\{1\},\{2\},\{3\}\} & = \sum_{1 \leq a,b,c \leq n} v_a \otimes v_b \otimes v_c \\
\bullet & \quad \bullet & \quad & \longleftrightarrow & \quad m\{\{1,3\},\{2\}\} & = \sum_{1 \leq a,b \leq n} v_a \otimes v_b \otimes v_a
\end{align*}
\]

And the action is still by concatenation:

\[
d:
\begin{align*}
\begin{array}{ccccccc}
\bullet & \quad \bullet \\
\end{array}
\end{align*}
\]
A connection to symmetric functions

As a consequence of the commuting relationship, the S_n-invariants in $V^\otimes k$ form a natural $P_k(n)$-module. In fact, a basis for the S_n-invariants is indexed by set partitions of $[k]$, i.e. half diagrams:

\[\bullet \bullet \bullet \quad \leftrightarrow \quad m\{\{1\},\{2\},\{3\}\} = \sum_{1\leq a,b,c\leq n} v_a \otimes v_b \otimes v_c \]

\[\bullet \bullet \quad \leftrightarrow \quad m\{\{1,3\},\{2\}\} = \sum_{1\leq a,b\leq n} v_a \otimes v_b \otimes v_a \]

And the action is still by concatenation:

\[\text{d:} \quad m\{\{1\},\{2\},\{3,4\}\} \quad \rightarrow \quad n^2 \quad m\{\{1,2\},\{3\},\{4\}\} \]
A connection to symmetric functions

Identify $V^\otimes k$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

So $P_k(n)$ acts on the degree-k homogeneous elements of $\mathbb{C}[x_1, \ldots, x_n]$.

Hopf algebras and symmetric functions:

(\ast) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus k \mathbb{C}S_k$ to other classes of symmetric functions.

(\ast) Aguiar-Orellana (2008) generalize [MR95] to connect a bigger diagram Hopf algebra (of uniform block permutations) and symmetric functions in non-commuting variables.

Issue: finitely many versus countably many variables!
A connection to symmetric functions

Identify $V^\otimes k$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

$v_a \otimes v_b \otimes v_a \leftrightarrow x_a x_b x_a$ and $v_a \otimes v_b \otimes v_b \leftrightarrow x_a x_b^2$.
A connection to symmetric functions

Identify $V^\otimes k$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

$v_a \otimes v_b \otimes v_a \leftrightarrow x_a x_b x_a$ and $v_a \otimes v_b \otimes v_b \leftrightarrow x_a x_b^2$.

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[x]^{S_n}$.
A connection to symmetric functions

Identify $V \otimes^k$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

$v_a \otimes v_b \otimes v_a \leftrightarrow x_a x_b x_a$ and $v_a \otimes v_b \otimes v_b \leftrightarrow x_a x_b^2$.

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[x]^S_n$.

Hopf algebras and symmetric functions:
A connection to symmetric functions

Identify $V^\otimes k$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

$v_a \otimes v_b \otimes v_a \leftrightarrow x_a x_b x_a$ and $v_a \otimes v_b \otimes v_b \leftrightarrow x_a x_b^2$.

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[x]^S_n$.

Hopf algebras and symmetric functions:

A connection to symmetric functions

Identify $V^\otimes k$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

$v_a \otimes v_b \otimes v_a \leftrightarrow x_ax_bx_a$ and $v_a \otimes v_b \otimes v_b \leftrightarrow x_ax_b^2$.

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[\mathbf{x}]^S_n$.

Hopf algebras and symmetric functions:

(*) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus_k \mathbb{C}S_k$ to other classes of symmetric functions.
A connection to symmetric functions

Identify $V^\otimes k$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

$$v_a \otimes v_b \otimes v_a \leftrightarrow x_ax_bx_a \quad \text{and} \quad v_a \otimes v_b \otimes v_b \leftrightarrow x_ax_b^2.$$

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[x]^S_n$.

Hopf algebras and symmetric functions:

(∗) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus_k \mathbb{C}S_k$ to other classes of symmetric functions.

(∗) Aguiar-Orellana (2008) generalize [MR95] to connect a bigger diagram Hopf algebra (of uniform block permutations) and symmetric functions in non-commuting variables.
A connection to symmetric functions

Identify $V^\otimes k$ with the homogeneous degree-k elements of $\mathbb{C}[x_1, \ldots, x_n]$ with non-commuting variables, via $v_a \leftrightarrow x_a$:

$$v_a \otimes v_b \otimes v_a \leftrightarrow x_a x_b x_a \quad \text{and} \quad v_a \otimes v_b \otimes v_b \leftrightarrow x_a x_b^2.$$

So $P_k(n)$ acts on the degree k homogeneous elements of $\mathbb{C}[x]^S_n$.

Hopf algebras and symmetric functions:

(\ast) Malvenuto-Reutenauer (1995) use Schur-Weyl duality to connect the graded Hopf algebra $\bigoplus_k \mathbb{C}S_k$ to other classes of symmetric functions.

(\ast) Aguiar-Orellana (2008) generalize [MR95] to connect a bigger diagram Hopf algebra (of uniform block permutations) and symmetric functions in non-commuting variables.

Issue: finitely many versus countably many variables!
Moving to the infinite symmetric group

Natural inclusion: \(S_n \subset S_{n+1} \) as permutations fixing \(n + 1 \).
Consider the limit

\[
S_1 \hookrightarrow S_2 \hookrightarrow S_3 \hookrightarrow \cdots \rightarrow S_\infty,
\]

so that \(S_\infty \) is the group of bijections on \(\mathbb{N} \) which fix all but finitely many elements.
Moving to the infinite symmetric group

Natural inclusion: \(S_n \subset S_{n+1} \) as permutations fixing \(n + 1 \).
Consider the limit

\[
S_1 \hookrightarrow S_2 \hookrightarrow S_3 \hookrightarrow \cdots \hookrightarrow S_\infty,
\]

so that \(S_\infty \) is the group of bijections on \(\mathbb{N} \) which fix all but finitely many elements.
Let \(S_\infty \) act on the set \(\{v_i\}_{i \in \mathbb{N}} \) by \(\sigma \cdot v_i = v_{\sigma(i)} \).
Moving to the infinite symmetric group

Natural inclusion: \(S_n \subset S_{n+1} \) as permutations fixing \(n + 1 \).
Consider the limit

\[
S_1 \hookrightarrow S_2 \hookrightarrow S_3 \hookrightarrow \cdots \hookrightarrow S_\infty,
\]

so that \(S_\infty \) is the group of bijections on \(\mathbb{N} \) which fix all but finitely many elements.
Let \(S_\infty \) act on the set \(\{v_i\}_{i \in \mathbb{N}} \) by \(\sigma \cdot v_i = v_{\sigma(i)} \).

Want:

(1) A vector space \(V \) containing a countable linearly independent subset \(\{v_i\}_{i \in \mathbb{N}} \);
(2) an appropriate notion of \(V \otimes^k \); and
(3) an algebra of endomorphisms on \(V \otimes^k \)
 i. whose elements are determined by their image on \(v_i \)'s, and
 ii. which contains \(S_\infty \) via the above action.
Three examples explored:

1. Countable dimensional vector space \(V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, \ldots\} \).

2. Banach space of \(p \)-power summable sequences

 \[V = \{ v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} \mid ||v||_p < \infty \} \]

3. Banach space of \(\ell^\infty \) bounded sequences

 \[V = \{ v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} \mid ||v||_\infty < \infty \} \]
Three examples explored:

1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, \ldots\}$.

 Good: Well-behaved vector space.

 Bad: No non-trivial S_∞ invariants! e.g. if $k = 1, \sum_i v_i \notin V$)
 (Sam-Snowden 2013: representation theoretic stability)

2. Banach space of p-power summable sequences

 $$V = \{v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} | \|v\|_p < \infty\}.$$

3. Banach space of ℓ^∞ bounded sequences

 $$V = \{v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} | \|v\|_\infty < \infty\}.$$
Three examples explored:

1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, \ldots \}$.
 - Good: Well-behaved vector space.
 - Bad: No non-trivial S_∞ invariants! e.g. if $k = 1$, $\sum_i v_i \notin V$)
 (Sam-Snowden 2013: representation theoretic stability)

2. Banach space of p-power summable sequences

 $$V = \{ v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} \mid \|v\|_p < \infty \}.$$

 - Good: Can get all the necessary S_∞ invariants in each degree.
 - Bad: Must restrict to bounded maps, yielding restrictive results.

3. Banach space of ℓ^∞ bounded sequences

 $$V = \{ v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} \mid \|v\|_\infty < \infty \}.$$
Three examples explored:

1. Countable dimensional vector space \(V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, \ldots \} \).

 \textbf{Good:} Well-behaved vector space.

 \textbf{Bad:} No non-trivial \(S_{\infty} \) invariants! e.g. if \(k = 1, \sum_i v_i \notin V \)

 (Sam-Snowden 2013: representation theoretic stability)

2. Banach space of \(p \)-power summable sequences

 \[V = \{ v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} \mid \|v\|_p < \infty \} \] .

 \textbf{Good:} Can get all the necessary \(S_{\infty} \) invariants in each degree.

 \textbf{Bad:} Must restrict to bounded maps, yielding restrictive results.

3. Banach space of \(\ell^\infty \) bounded sequences

 \[V = \{ v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} \mid \|v\|_\infty < \infty \} \] .

 \textbf{Good:} Has all the \(S_{\infty} \) invariants, and admits a larger set of maps.

 \textbf{Bad:} Even bounded maps aren’t well-behaved for our purposes.
Three examples explored:

1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})} = \mathbb{C}\{v_1, v_2, \ldots\}$.

 Good: Well-behaved vector space.

 Bad: No non-trivial S_∞ invariants! e.g. if $k = 1, \sum_i v_i \notin V$)

 (Sam-Snowden 2013: representation theoretic stability)

2. Banach space of p-power summable sequences

 $$V = \{v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} \mid \|v\|_p < \infty\}.$$

 Good: Can get all the necessary S_∞ invariants in each degree.

 Bad: Must restrict to bounded maps, yielding restrictive results.

3. Banach space of ℓ^∞ bounded sequences

 $$V = \{v = (a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N} \mid \|v\|_\infty < \infty\}.$$

 Good: Has all the S_∞ invariants, and admits a larger set of maps.

 Bad: Even bounded maps aren’t well-behaved for our purposes.

Good/Bad?

2 and 3 yield non-unitary and non-semisimple representations!
1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})}$

If the $\varphi \in \text{End}(V \otimes k)$ commutes with the action of S_∞, it acts like a linear combination of partition algebra diagrams.

Additionally, to be in $\text{End}(V \otimes k)$, its image must be a finite linear combination of v_i's.
1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})}$

If the $\varphi \in \text{End}(V \otimes k)$ commutes with the action of S_∞, it acts like a linear combination of partition algebra diagrams.

Additionally, to be in $\text{End}(V \otimes k)$, its image must be a finite linear combination of v_i's.
1. Countable dimensional vector space $V = \mathbb{C}^{(\mathbb{N})}$

If the $\varphi \in \text{End}(V^\otimes k)$ commutes with the action of S_∞, it acts like a linear combination of partition algebra diagrams.

Additionally, to be in $\text{End}(V^\otimes k)$, its image must be a finite linear combination of v_i's.

\begin{align*}
\varphi &\uparrow & v_a \otimes v_a \\
v_a \otimes v_b & & \delta_{a,b} \left(v_a \otimes \left(\sum_i v_i \right) \right) \\
\varphi &\uparrow & v_a \otimes v_b
\end{align*}
1. Countable dimensional vector space \(V = \mathbb{C}^{(\mathbb{N})} \)

If the \(\varphi \in \text{End}(V^{\otimes k}) \) commutes with the action of \(S_\infty \), it acts like a linear combination of partition algebra diagrams.

Additionally, to be in \(\text{End}(V^{\otimes k}) \), its image must be a finite linear combination of \(v_i \)'s.

Yes! \[\varphi \uparrow \]

No! \[\delta_{a,b} \left(v_a \otimes \left(\sum_i v_i \right) \right) \]
1. Countable dimensional vector space \(V = \mathbb{C}^{(\mathbb{N})} \)

If the \(\varphi \in \text{End}(V \otimes k) \) commutes with the action of \(S_\infty \), it acts like a linear combination of partition algebra diagrams.

Additionally, to be in \(\text{End}(V \otimes k) \), its image must be a finite linear combination of \(v_i \)'s.

\[
\begin{align*}
\varphi (v_a \otimes v_a) & \quad \text{Yes!} \\
\varphi \left(v_a \otimes \left(\sum_i v_i \right) \right) & \quad \text{No!}
\end{align*}
\]

Result: The *top-propagating partition algebra*, generated by diagrams with no block isolated to the top.
(Sam-Snowden: the *upward partition category* glues all \(k \) together)
2. Banach space of p-power summable sequences

Place a metric μ on \mathbb{C}^N so that
\[
\left\| \sum_i v_i \right\|_p = \left\| (1, 1, 1, \ldots) \right\|_p = \sum_i \mu_i^p < \infty.
\]
(Enough to get all expected invariants in the closure of $V^\otimes k$ for each k.)
2. Banach space of p-power summable sequences

Place a metric μ on $\mathbb{C}^\mathbb{N}$ so that
\[\| \sum_i v_i \|^p_p = \| (1, 1, 1, \ldots) \|^p_p = \sum_i \mu_i^p < \infty. \]
(Enough to get all expected invariants in the closure of $V \otimes^k$ for each k.)

We restrict to continuous/bounded endomorphisms $\mathcal{B}(V \otimes^k)$.

Yes:

No:

(Same algebra as in Aguiar-Orellana!)
2. Banach space of \(p \)-power summable sequences

Place a metric \(\mu \) on \(\mathbb{C}^\mathbb{N} \) so that
\[
\left\| \sum_i v_i \right\|_p = \left\| (1, 1, 1, \ldots) \right\|_p = \sum_i \mu_i^p < \infty.
\]
(Enough to get all expected invariants in the closure of \(V \otimes^k \) for each \(k \).)

We restrict to continuous/bounded endomorphisms \(B(V \otimes^k) \).

Again, if the \(\varphi \in B(V \otimes^k) \) commutes with \(S_\infty \), it acts like a linear combination of partition algebra diagrams.
Place a metric μ on \mathbb{C}^N so that

$$\| \sum_i v_i \|_p = \|(1, 1, 1, \ldots)\|_p = \sum_i \mu_i^p < \infty.$$ (Enough to get all expected invariants in the closure of $V \otimes^k$ for each k.)

We restrict to continuous/bounded endomorphisms $\mathcal{B}(V \otimes^k)$.

Again, if the $\varphi \in \mathcal{B}(V \otimes^k)$ commutes with S_∞, it acts like a linear combination of partition algebra diagrams.

However, boundedness then additionally restricts to maps whose image on simple tensors is a permutation of factors.

(All other partition diagrams have unbounded images).
2. Banach space of p-power summable sequences

Place a metric μ on \mathbb{C}^N so that

$$\left\| \sum_i v_i \right\|_p = \left\| (1, 1, 1, \ldots) \right\|_p = \sum_i \mu_i^p < \infty.$$

(Enough to get all expected invariants in the closure of $V^\otimes k$ for each k.)

We restrict to continuous/bounded endomorphisms $B(\overline{V^\otimes k})$.

Again, if the $\varphi \in B(\overline{V^\otimes k})$ commutes with S_∞, it acts like a linear combination of partition algebra diagrams.

However, boundedness then additionally restricts to maps whose image on simple tensors is a permutation of factors.

(All other partition diagrams have unbounded images).

Result: The algebra of *uniform block permutations*, generated by diagrams whose blocks have the same size on top as on bottom.

Yes: ![Yes Diagram](image1)

No: ![No Diagram](image2)

(Same algebra as in Aguiar-Orellana!)
3. Banach space of ℓ^∞-bounded sequences

Sequences $(a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N}$ whose entries are bounded.

Issue: Even ℓ^∞-bounded endomorphisms are not determined by their images on $\{v_i\}_{i \in \mathbb{N}}$.
3. Banach space of ℓ^∞-bounded sequences

Sequences $(a_1, a_2, \ldots) \in \mathbb{C}^\mathbb{N}$ whose entries are bounded.

Issue: Even ℓ^∞-bounded endomorphisms are not determined by their images on $\{v_i\}_{i \in \mathbb{N}}$. So let $B_{\text{Mat}}(\overline{V \otimes k})$ be the algebra of ℓ^∞-bounded maps which can be written as matrices.

(The sums across rows are ℓ_∞ bounded.)
3. Banach space of ℓ^∞-bounded sequences

Sequences $\left(a_1, a_2, \ldots \right) \in \mathbb{C}^\mathbb{N}$ whose entries are bounded.

Issue: Even ℓ^∞-bounded endomorphisms are not determined by their images on $\{v_i\}_{i \in \mathbb{N}}$. So let $\mathcal{B}_{\text{Mat}}(\overline{V \otimes k})$ be the algebra of ℓ^∞-bounded maps which can be written as matrices.

(The sums across rows are ℓ_∞ bounded.)

Result: The *bottom-propagating partition algebra*, generated by diagrams with no block isolated to the bottom. (Isomorphic to case 1)

![Yes:](attachment:yes_diagram.png) ![No:](attachment:no_diagram.png)
Remark 1: Orellana et al. (in progress) show that if a diagram Hopf algebra (as in [MR95] or [AO08]) is built from partition diagrams, those diagrams can have no blocks isolated to the top or bottom rows.

Case 1: no application to symmetric functions.
Case 2: tied to symmetric functions in [AO08].
Question: Is there a fix for case 3?
Putting it back into context

Remark 1: Orellana et al. (in progress) show that if a diagram Hopf algebra (as in [MR95] or [AO08]) is built from partition diagrams, those diagrams can have no blocks isolated to the top or bottom rows.

Case 1: no application to symmetric functions.
Case 2: tied to symmetric functions in [AO08].
Question: Is there a fix for case 3?

Remark 2: For all three cases, even for $k = 1$, the centralizer algebra is spanned by $\mathbb{1}$, so is isomorphic to \mathbb{C}. However, in cases 2 and 3, we expected more since V has an invariant subspace. This discrepancy comes from the fact that the action of S_∞ is not semisimple.

Question: Can we use this framework to study certain non-unitary representations of S_∞?